Skip to main content
Log in

Promoted Hydroformylation of Formaldehyde By Electronic Metal–Support Interactions in N-Group Functionalized Silica Supported Rhodium Catalyst

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The influence of surface modification of SiO2 carrier by grafting method and its effects for Rh supporting was investigated on formaldehyde hydroformylation reaction. The relationship between the structure of catalysts and their performance was characterized in detail by X-ray diffraction, N2 adsorption–desorption, temperature programmed reduction with H2, X-ray photoelectron spectroscopy, and in situ infrared. After grafting the amino organic functional group, the surface circumstance of SiO2 was altered, and moreover, sites available for metal loading was enriched on the carrier that distribute a high dispersion of Rh species Under the same Rh loading, the Rh@N–SiO2 catalyst exhibits better catalytic activity than pristine SiO2 supported Rh catalysts. Spectroscopic evidences suggest the presence of an electronic perturbation between Rh and modified SiO2 which promotes the hydroformylation of formaldehyde by maintaining Rh at proper Rh0/(Rh3+ + Rhδ+) ratio.

Graphic Abstract

Diagram of the effect of surface modified with amino group on metal rhodium loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Guan H, Lin J, Qiao B, Yang X, Li L, Miao S, Liu J, Wang A, Wang X, Zhang T (2019) Catalytically active Rh sub-nanoclusters on TiO2 for CO oxidation at cryogenic temperatures. Angew Chem Int Ed 55:2820–2824

    Article  Google Scholar 

  2. Matthias B, Boy C, Carl F, Christian K (1995) Progress in hydroformylation and carbonylation. J Mol Catal A 104:17–85

    Article  Google Scholar 

  3. Liu L, Chen X, Yang S, Yao Y, Lu Y, Liu Y (2020) Insight into decomposition of formic acid to syngas required for Rh-catalyzed hydroformylation of olefins. J Catal. https://doi.org/10.1016/j.jcat.2020.09.039

    Article  Google Scholar 

  4. Hood D, Johnson R, Carpenter A, Younker J, Vinyard D, Stanley G (2020) Highly active cationic cobalt(II) hydroformylation catalysts. Science 367:542–548

    Article  CAS  Google Scholar 

  5. Ma W, Ding Y, Lin L (2004) Fischer-Tropsch synthesis over activated-carbon-supported cobalt catalysts: effect of Co loading and promoters on catalyst performance. Ind Eng Chem Perform 43:2391–2398

    Article  CAS  Google Scholar 

  6. Shylesh S, Hanna D, Mlinar A, Kong X, Reimer J, Bell A (2013) In situ formation of Wilkinson-type hydroformylation catalysis: insight into the structure, stability, and kinetics of triphenylphospine- and xantphos-modified Rh/SiO2. ACS Catal 3:348–357

    Article  CAS  Google Scholar 

  7. Marcusquinn A (1987) Role of 1-methyl-3-ethylbenzimidazolium bromide-ruthenium catalyst in the one-step production of ethylene glycol via formaldehyde condensation and in its direct synthesis from synthesis gas. J Mol Catal 42:389–393

    Article  Google Scholar 

  8. Franke R, Selent D, Börner A (2012) Applied hydroformylation. Chem Rev 112:5675–5732

    Article  CAS  Google Scholar 

  9. Hanna S, Holder J, Hartwig J (2019) A multicatalytic approach to the hydroaminomethylation of α-olefins. Angew Chem Int Ed 58:3368–3372

    Article  CAS  Google Scholar 

  10. Anderson J, Pino V, Hagberg E, Sheares V, Armstrong D (2003) Surfactant solvation effects and micelle formation in ionic liquids. Chem Commun. https://doi.org/10.1039/b307516h

    Article  Google Scholar 

  11. Aghmiz A, Orejon A, Dieguez M, Miquel-Serrano M, Claver C, Masdeu-Bulto A, Sinou D, Laurenczy G (2003) Rhodium-sulfonated diphosphine catalysts in aqueous hydroformylation of vinyl arenes: high-pressure NMR and IR studies. J Mol Catal Chem 195:113–124

    Article  CAS  Google Scholar 

  12. Anderson J, Ding J, Welton T, Armstrong D (2002) Characterizing ionic liquids on the basis of multiple solvation interactions. J Am Chem Soc 124:14247–14254

    Article  CAS  Google Scholar 

  13. Axet M, Castillon S, Claver C (2006) Rhodium-diphosphite atalyzed hydroformylation of allylbenzene and propenylbenzene derivatives. Inorg Chim Acta 359:2973–2979

    Article  CAS  Google Scholar 

  14. Keim W, Berger M, Schlupp J (1980) High-pressure homogeneous hydrogenation of carbon monoxide in polar and nonpolar solvents. J Catal 61:359–365

    Article  CAS  Google Scholar 

  15. Fahey D (1981) Rational mechanism for homogeneous hydrogenation of carbon monoxide to alcohols, polyols, and esters. J Am Chem Soc 103:136–141

    Article  CAS  Google Scholar 

  16. Pretzer W, Kobylinski T (1980) Methanol carbonylation as an alternate route to chemicals. Ann N Y Acad Sci 333:58–66

    Article  CAS  Google Scholar 

  17. Jayakody L, Ferdouse J, Hayashi N, Kitagaki H (2017) Identification and detoxification of glycolaldehyde, an unattended bioethanol fermentation inhibitor. Crit Rev Biotechnol 37:177–189

    Article  CAS  Google Scholar 

  18. Jacobson S, Chueh C (1985) Process for the production of ethylene glycol through the hydroformylation of glycol aldehyde, US

  19. Spencer A (1980) Hydroformylation of formaldehyde atalyzed by rhodium complexes. J Organomet Chem 194:113–123

    Article  CAS  Google Scholar 

  20. Lang R, Li T, Matsumura D, Miao S, Ren Y, Cui Y, Tan Y, Qiao B, Li L, Wang A, Wang X, Zhang T (2016) Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew Chem Int Ed 55:16054–16058

    Article  CAS  Google Scholar 

  21. Zhao J, He Y, Wang F, Zheng W, Huo C, Liu X, Jiao H, Yang Y, Li Y, Wen X (2019) Suppressing metal leaching in a supported Co/SiO2 catalyst with effective protectants in the hydroformylation reaction. ACS Catal 10:914–920

    Article  Google Scholar 

  22. Gleich D, Hutter J (2010) Computational approaches to activity in rhodium-catalysed hydroformylation. Chemistry 10:2435–2444

    Article  Google Scholar 

  23. Taylor R (1993) Silica gel and bonded phases: their production, properties and use in LC. Talanta 41:344–345

    Google Scholar 

  24. Spange S (2000) Silica surface modification by cationic polymerization and carbenium intermediates. Prog Polym Sci 25:781–849

    Article  CAS  Google Scholar 

  25. Sanz-Moral L, Aho A, Kumar N, Eranen K, Peurla M, Peltonen J, Murzin D, Salmi T (2018) Synthesis and characterization Ru–C/SiO2 aerogel catalysts for sugar hydrogenation reactions. Catal Lett 148:3514–3523

    Article  CAS  Google Scholar 

  26. Jaroniec C, Kruk M, Jaroniec M, Sayari A (1998) Tailoring surface and structural properties of MCM-41 silicas by bonding organosilanes. J Phys Chem B 102:5503–5510

    Article  CAS  Google Scholar 

  27. Weng S (2010) Fourier Transform Infrared Spectrometry. Chinese Chemical Industrial Press Chapter 8, 357

  28. Ma F, Huang A, Zhang S, Zhou Q, Zhang Q (2020) Identification of three Diospysros species using FT-IR and 2DCOS-IR. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.128709

    Article  Google Scholar 

  29. Hanaoka T, Arakawa H, Matsuzaki T, Sugi Y, Kanno K, Abe Y (2000) Catal Today 58:271–280

    Article  CAS  Google Scholar 

  30. Meyer T, Konrath R, Kamer P, Wu X (2020) Pincer ligand enhanced rhodium-catalyzed carbonylation of formaldehyde: direct ethylene glycol production. Asian J Org Chem. https://doi.org/10.1002/ajoc.202000573

    Article  Google Scholar 

  31. Wu J, Qiao L, Zhou Z, Cui G, Zong S, Xu D, Ye R, Chen R, Si R, Yao Y (2019) Revealing the synergistic effects of Rh and substituted La2B2O7 (B = Zr or Ti) for preserving the reactivity of catalyst in dry reforming of methane. ACS Catal 9:932–945

    Article  CAS  Google Scholar 

  32. Ding K, Gulec A, Johnson A, Schweitzer N, Stucky G, Marks L, Stair P (2015) Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350:189–192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (2017YFB0307301, 2017YFA0206802, 2018YFA0704502), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA21020800), the Science and Technology Service Network Initiative (KFJ-STS-QYZD-048), the NSF of China (21703247), the Science Foundation of Fujian Province (2018J05029, 2019J05156, 2019H0053) and Guizhou Province ([2018]2193, 2020-1-10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuangen Yao.

Ethics declarations

Conflict of interest

No conflict of interest between authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Qiao, L., Zhou, Z. et al. Promoted Hydroformylation of Formaldehyde By Electronic Metal–Support Interactions in N-Group Functionalized Silica Supported Rhodium Catalyst. Catal Lett 151, 3664–3674 (2021). https://doi.org/10.1007/s10562-021-03568-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03568-x

Keywords

Navigation