Skip to main content

Advertisement

Log in

Antacid Therapy in Coronary Artery Disease and Heart Failure: Proton Pump Inhibitors vs. H2 Receptor Blockers

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose

Acid suppressive therapy using histamine H2 receptor antagonists (H2RAs) and proton pump inhibitors (PPIs) can be utilized for the prevention of gastrointestinal bleeding (GIB) among patients with cardiovascular disease receiving dual antiplatelet therapy (DAPT). However, emerging data suggests underlying associations between PPI or H2RA use and cardiovascular disease incidence, progression, and mortality. This review explores the history of acid suppressive therapies and their use in cardiovascular disease patients and the growing evidence in support of H2RA use.

Recent Findings

PPIs were originally championed as better than H2RAs for preventing GIB events in cardiovascular disease patients on DAPT therapy, but there is evidence to suggest that drug-drug interactions between clopidogrel and PPIs may translate to worse cardiovascular outcomes. Studies demonstrating PPI superiority in the setting of DAPT were also limited due to small sample sizes and high levels of bias. Consequently, there is renewed interest in H2RAs for patients on DAPT with some data demonstrating similar or improved clinical outcomes over PPI therapy. Additionally, studies have discovered a possible role for H2RAs in the management of heart failure (HF) incidence, symptoms, and mortality.

Summary

Studies comparing H2RAs and PPIs in patients on DAPT have demonstrated mixed results for cardiovascular and GIB outcomes, with several studies being underpowered and limited by biases. Recent clinical and pre-clinical studies now support the noninferiority of H2RAs for major outcomes and even utility in HF. These findings suggest that H2RAs may warrant reconsideration as an acid suppressive therapy over PPIs for patients on DAPT or with HF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Original research data will be available upon request.

Code Availability

Not applicable.

References

  1. Udell JA, Bonaca MP, Collet JP, et al. Long-term dual antiplatelet therapy for secondary prevention of cardiovascular events in the subgroup of patients with previous myocardial infarction: a collaborative meta-analysis of randomized trials. Eur Heart J. 2016;37(4):390–9.

    PubMed  Google Scholar 

  2. O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61(4):e78–140.

    Article  PubMed  Google Scholar 

  3. Lawton JS, Tamis-Holland JE, Bangalore S, et al. ACC/AHA/SCAI guideline for coronary artery revascularization: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2021;2021:CIR0000000000001038.

    Google Scholar 

  4. Steinhubl SR, Berger PB, Mann JT, et al. Early and sustained dual oral antiplatelet therapy following percutaneous coronary intervention: a randomized controlled trial. JAMA. 2002;288(19):2411–20.

    Article  CAS  PubMed  Google Scholar 

  5. Peters RJ, Mehta SR, Fox KA, et al. Effects of aspirin dose when used alone or in combination with clopidogrel in patients with acute coronary syndromes: observations from the Clopidogrel in Unstable angina to prevent Recurrent Events (CURE) study. Circulation. 2003;108(14):1682–7.

    Article  CAS  PubMed  Google Scholar 

  6. Han Y, Liao Z, Li Y, et al. Magnetically controlled capsule endoscopy for assessment of antiplatelet therapy-induced gastrointestinal injury. J Am Coll Cardiol. 2022;79(2):116–28.

    Article  CAS  PubMed  Google Scholar 

  7. Crofford LJ. COX-1 and COX-2 tissue expression: implications and predictions. J Rheumatol Suppl. 1997;49:15–9.

    CAS  PubMed  Google Scholar 

  8. Wilson DE. Role of prostaglandins in gastroduodenal mucosal protection. J Clin Gastroenterol. 1991;13(Suppl 1):65.

    Article  Google Scholar 

  9. Cattaneo M. P2Y12 receptors: structure and function. J Thromb Haemost. 2015;13(Suppl):1.

    Google Scholar 

  10. Duan L, Li M, Wang F, et al. Increased risk of clopidogrel-induced gastric mucosal erosion in elderly Chinese men harboring the ABCB1 3435T allele. Risk Manag Healthc Policy. 2020;13:1237–44.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bhatt DL, Scheiman J, Abraham NS, et al. ACCF/ACG/AHA 2008 expert consensus document on reducing the gastrointestinal risks of antiplatelet therapy and NSAID use: a report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2008;52(18):1502–17.

    Article  PubMed  Google Scholar 

  12. Li JJ, Wu XY, Chen JL, et al. Antiplatelet drug ticagrelor delays gastric ulcer healing in rats. Exp Ther Med. 2017;14(4):3774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anonymous. Histamine type-2 receptor antagonists (H2 blockers). In: Anonymous LiverTox: clinical and research information on drug-induced liver injury. Bethesda (MD), 2012.

  14. Schubert ML, Peura DA. Control of gastric acid secretion in health and disease. Gastroenterology. 2008;134(7):1842–60.

    Article  CAS  PubMed  Google Scholar 

  15. Tougas G, Armstrong D. Efficacy of H2 receptor antagonists in the treatment of gastroesophageal reflux disease and its symptoms. Can J Gastroenterol. 1997;11(Suppl B):51B-54B.

    PubMed  Google Scholar 

  16. Humphries TJ, Merritt GJ. Review article: drug interactions with agents used to treat acid-related diseases. Aliment Pharmacol Ther. 1999;13(Suppl 3):18–26.

    Article  CAS  PubMed  Google Scholar 

  17. Shin JM, Sachs G. Pharmacology of proton pump inhibitors. Curr Gastroenterol Rep. 2008;10(6):528–34.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Strand DS, Kim D, Peura DA. 25 years of proton pump inhibitors: a comprehensive review. Gut Liver. 2017;11(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  19. Nugent CC, Falkson SR and Terrell JM. H2 blockers. In: Anonymous StatPearls. Treasure Island (FL): StatPearls Publishing LLC, 2021.

  20. Vaduganathan M, Cannon CP, Cryer BL, et al. Efficacy and safety of proton-pump inhibitors in high-risk cardiovascular subsets of the COGENT trial. Am J Med. 2016;129(9):1002–5.

    Article  CAS  PubMed  Google Scholar 

  21. Levine GN, Bates ER, Blankenship JC, et al. ACCF/AHA/SCAI guideline for percutaneous coronary intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58(24):44.

    Article  Google Scholar 

  22. Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS guidelines on myocardial revascularization. Kardiol Pol. 2018;76(12):1585–664.

    Article  PubMed  Google Scholar 

  23. Melloni C, Washam JB, Jones WS, et al. Conflicting results between randomized trials and observational studies on the impact of proton pump inhibitors on cardiovascular events when coadministered with dual antiplatelet therapy: systematic review. Circ Cardiovasc Qual Outcomes. 2015;8(1):47–55.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Juurlink DN, Gomes T, Ko DT, et al. A population-based study of the drug interaction between proton pump inhibitors and clopidogrel. CMAJ. 2009;180(7):713–8.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mistry SD, Trivedi HR, Parmar DM, Dalvi PS, Jiyo C. Impact of proton pump inhibitors on efficacy of clopidogrel: review of evidence. Indian J Pharmacol. 2011;43(2):183–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee CH, Franchi F, Angiolillo DJ. Clopidogrel drug interactions: a review of the evidence and clinical implications. Expert Opin Drug Metab Toxicol. 2020;16(11):1079–96.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Lau WC, Hollenberg PF. Formation of the thiol conjugates and active metabolite of clopidogrel by human liver microsomes. Mol Pharmacol. 2012;82(2):302–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Robinson M, Horn J. Clinical pharmacology of proton pump inhibitors: what the practising physician needs to know. Drugs. 2003;63(24):2739–54.

    Article  CAS  PubMed  Google Scholar 

  29. Scott SA, Owusu Obeng A, Hulot JS. Antiplatelet drug interactions with proton pump inhibitors. Expert Opin Drug Metab Toxicol. 2014;10(2):175–89.

    Article  CAS  PubMed  Google Scholar 

  30. Angiolillo DJ, Gibson CM, Cheng S, et al. Differential effects of omeprazole and pantoprazole on the pharmacodynamics and pharmacokinetics of clopidogrel in healthy subjects: randomized, placebo-controlled, crossover comparison studies. Clin Pharmacol Ther. 2011;89(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  31. Feldman M, Burton ME. Histamine2-receptor antagonists Standard therapy for acid-peptic diseases 1. N Engl J Med. 1990;323(24):1672–80.

    Article  CAS  PubMed  Google Scholar 

  32. Rendic S. Drug interactions of H2-receptor antagonists involving cytochrome P450 (CYPs) enzymes: from the laboratory to the clinic. Croat Med J. 1999;40(3):357–67.

    CAS  PubMed  Google Scholar 

  33. Ohbuchi M, Noguchi K, Kawamura A, Usui T. Different effects of proton pump inhibitors and famotidine on the clopidogrel metabolic activation by recombinant CYP2B6, CYP2C19 and CYP3A4. Xenobiotica. 2012;42(7):633–40.

    Article  CAS  PubMed  Google Scholar 

  34. Small DS, Farid NA, Li YG, et al. Effect of ranitidine on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel. Curr Med Res Opin. 2008;24(8):2251–7.

    Article  CAS  PubMed  Google Scholar 

  35. Yamane K, Kato Y, Tazaki J, et al. Effects of PPIs and an H2 blocker on the antiplatelet function of clopidogrel in Japanese patients under dual antiplatelet therapy. J Atheroscler Thromb. 2012;19(6):559–69.

    Article  CAS  PubMed  Google Scholar 

  36. Yasu T, Sato N, Kurokawa Y, Saito S, Shoji M. Efficacy of H2 receptor antagonists for prevention of upper gastrointestinal bleeding during dual-antiplatelet therapy. Int J Clin Pharmacol Ther. 2013;51(11):854–60.

    Article  CAS  PubMed  Google Scholar 

  37. Sherwood MW, Melloni C, Jones WS, Washam JB, Hasselblad V, Dolor RJ. Individual proton pump inhibitors and outcomes in patients with coronary artery disease on dual antiplatelet therapy: a systematic review. J Am Heart Assoc. 2015;4:11.

    Article  Google Scholar 

  38. Yi ZM, Qiu TT, Zhang Y, Liu ZY, Zhai SD. Comparison of prophylactic effect of UGIB and effects on platelet function between PPIs and H2RAs combined with DAPT: systematic review and meta-analysis. Ther Clin Risk Manag. 2017;13:367–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Almufleh A, Ramirez FD, So D, et al. H2 receptor antagonists versus proton pump inhibitors in patients on dual antiplatelet therapy for coronary artery disease: a systematic review. Cardiology. 2018;140(2):115–23.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang YS, Li Q, He BS, Liu R, Li ZJ. Proton pump inhibitors therapy vs H2 receptor antagonists therapy for upper gastrointestinal bleeding after endoscopy: a meta-analysis. World J Gastroenterol. 2015;21(20):6341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chan FK, Kyaw M, Tanigawa T, et al. Similar efficacy of proton-pump inhibitors vs H2-receptor antagonists in reducing risk of upper gastrointestinal bleeding or ulcers in high-risk users of low-dose aspirin. Gastroenterology. 2017;152(1):105-110.e1.

    Article  CAS  PubMed  Google Scholar 

  42. Maintz L, Schwarzer V, Bieber T, van der Ven K, Novak N. Effects of histamine and diamine oxidase activities on pregnancy: a critical review. Hum Reprod Update. 2008;14(5):485–95.

    Article  CAS  PubMed  Google Scholar 

  43. Patella V, Marino I, Arbustini E, et al. Stem cell factor in mast cells and increased mast cell density in idiopathic and ischemic cardiomyopathy. Circulation. 1998;97(10):971–8.

    Article  CAS  PubMed  Google Scholar 

  44. Mackins CJ, Kano S, Seyedi N, et al. Cardiac mast cell-derived renin promotes local angiotensin formation, norepinephrine release, and arrhythmias in ischemia/reperfusion. J Clin Invest. 2006;116(4):1063–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kupreishvili K, Fuijkschot WW, Vonk AB, et al. Mast cells are increased in the media of coronary lesions in patients with myocardial infarction and may favor atherosclerotic plaque instability. J Cardiol. 2017;69(3):548–54.

    Article  PubMed  Google Scholar 

  46. Shiota N, Rysa J, Kovanen PT, Ruskoaho H, Kokkonen JO, Lindstedt KA. A role for cardiac mast cells in the pathogenesis of hypertensive heart disease. J Hypertens. 2003;21(10):1935–44.

    Article  CAS  PubMed  Google Scholar 

  47. Hara M, Ono K, Hwang MW, et al. Evidence for a role of mast cells in the evolution to congestive heart failure. J Exp Med. 2002;195(3):375–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zdravkovic V, Pantovic S, Rosic G, et al. Histamine blood concentration in ischemic heart disease patients. J Biomed Biotechnol. 2011;2011:315709.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kondru SK, Potnuri AG, Allakonda L, Konduri P. Histamine 2 receptor antagonism elicits protection against doxorubicin-induced cardiotoxicity in rodent model. Mol Cell Biochem. 2018;441(1–2):77–88.

    Article  CAS  PubMed  Google Scholar 

  50. Bristow MR, Sageman WS, Scott RH, et al. Acute and chronic cardiovascular effects of doxorubicin in the dog: the cardiovascular pharmacology of drug-induced histamine release. J Cardiovasc Pharmacol. 1980;2(5):487–515.

    Article  CAS  PubMed  Google Scholar 

  51. Takahama H, Asanuma H, Sanada S, et al. A histamine H(2) receptor blocker ameliorates development of heart failure in dogs independently of beta-adrenergic receptor blockade. Basic Res Cardiol. 2010;105(6):787–94.

    Article  CAS  PubMed  Google Scholar 

  52. Zeng Z, Shen L, Li X, et al. Disruption of histamine H2 receptor slows heart failure progression through reducing myocardial apoptosis and fibrosis. Clin Sci (Lond). 2014;127(7):435–48.

    Article  CAS  PubMed  Google Scholar 

  53. Luo T, Chen B, Zhao Z, et al. Histamine H2 receptor activation exacerbates myocardial ischemia/reperfusion injury by disturbing mitochondrial and endothelial function. Basic Res Cardiol. 2013;108(3):342–4 (Epub 2013).

    Article  PubMed  Google Scholar 

  54. Zhang J, Cai WK, Zhang Z, et al. Cardioprotective effect of histamine H2 antagonists in congestive heart failure: a systematic review and meta-analysis. Medicine (Baltimore). 2018;97(15):e0409.

    Article  CAS  PubMed  Google Scholar 

  55. Kim J, Ogai A, Nakatani S, et al. Impact of blockade of histamine H2 receptors on chronic heart failure revealed by retrospective and prospective randomized studies. J Am Coll Cardiol. 2006;48(7):1378–84.

    Article  CAS  PubMed  Google Scholar 

  56. Leary PJ, Tedford RJ, Bluemke DA, et al. Histamine H2 receptor antagonists, left ventricular morphology, and heart failure risk: the MESA study. J Am Coll Cardiol. 2016;67(13):1544–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yoshihisa A, Takiguchi M, Kanno Y, et al. Associations of acid suppressive therapy with cardiac mortality in heart failure patients. J Am Heart Assoc. 2017;6:5.

    Article  Google Scholar 

  58. Solomon SD, Wolff S, Jarboe LA, Wolfe MM, Lee RT. Effects of histamine type 2-receptor antagonists cimetidine and famotidine on left ventricular systolic function in chronic congestive heart failure. Am J Cardiol. 1993;72(15):1163–6.

    Article  CAS  PubMed  Google Scholar 

  59. Salmon P, Fitzgerald D, Kenny M. No effect of famotidine on cardiac performance by noninvasive hemodynamic measurements. Clin Pharmacol Ther. 1991;49(5):589–95.

    Article  CAS  PubMed  Google Scholar 

  60. Lucas BD, Williams MA, Mohiuddin SM, LaMadrid LJ, Schroeder LJ, Hilleman DE. Effect of oral H2-receptor antagonists on left ventricular systolic function and exercise capacity in patients with chronic stable heart failure. Pharmacotherapy. 1998;18(4):824–30.

    Article  CAS  PubMed  Google Scholar 

  61. Lee KW, Kayser SR, Hongo RH, Tseng ZH, Scheinman MM. Famotidine and long QT syndrome. Am J Cardiol. 2004;93(10):1325–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was funded by the John S. Dunn Chair in Cardiology Research and Education.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript. Dr. Yochai Birnbaum had the idea for the article and authors Muzamil Khawaja, Janki Thakker, and Riyad Kherallah all performed the literature search and drafted the work. All authors commented and revised previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yochai Birnbaum.

Ethics declarations

Ethics Approval

This is a review article. No ethical approval is required.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the final manuscript, submitted for consideration of publication in Cardiovascular Drugs and Therapy.

Conflict of Interest

Hani Jneid: no relevant financial or non-financial interests to disclose.

Masafumi Kitakaze: research grant from Takeda; speaker honoraria from AstraZeneca, Ono, Novartis, Tanabe-Mitsubishi, Takeda, Pfizer, Daiichi-Sankyo, Otsuka, Sanofi, Boehringer Ingelheim, Amgen, Kowa, Toyama-Kagaku, and Kureha.

Dominick J. Angiolillo: consulting fees or honoraria from Abbott, Amgen, AstraZeneca, Bayer, Biosensors, Boehringer Ingelheim, Bristol-Myers Squibb, Chiesi, Daiichi-Sankyo, Eli Lilly, Haemonetics, Janssen, Merck, PhaseBio, PLx Pharma, Pfizer, Sanofi, and The Medicines Company and has received payments for participation in review activities from CeloNova and St Jude Medical, outside the present work. He also declares that his institution has received research grants from Amgen, AstraZeneca, Bayer, Biosensors, CeloNova, CSL Behring, Daiichi-Sankyo, Eisai, Eli Lilly, Gilead, Janssen, Matsutani Chemical Industry Co., Merck, Novartis, Osprey Medical, Renal Guard Solutions, and Scott R. MacKenzie Foundation.

Yochai Birnbaum: research grant from AstraZeneca.

Muzamil Khawaja: no relevant financial or non-financial interests to disclose.

Janki Thakker: no relevant financial or non-financial interests to disclose.

Riyad Kherallah: no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khawaja, M., Thakker, J., Kherallah, R. et al. Antacid Therapy in Coronary Artery Disease and Heart Failure: Proton Pump Inhibitors vs. H2 Receptor Blockers. Cardiovasc Drugs Ther 38, 181–189 (2024). https://doi.org/10.1007/s10557-022-07358-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-022-07358-4

Keywords

Navigation