Skip to main content

Advertisement

Log in

Lower extremity CT angiography in peripheral arterial disease: from the established approach to evolving technical developments

  • Review Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

With the advent of multidetector computed tomography (CT), CT angiography (CTA) has gained widespread popularity for noninvasive imaging of the arterial vasculature. Peripheral extremity CTA can nowadays be performed rapidly with high spatial resolution and a decreased amount of both intravenous contrast and radiation exposure. In patients with peripheral artery disease (PAD), this technique can be used to delineate the bilateral lower extremity arterial tree and to determine the amount of atherosclerotic disease while differentiating between acute and chronic changes. This article provides an overview of several imaging techniques for PAD, specifically discusses the use of peripheral extremity CTA in patients with PAD, clinical indications, established technical considerations and novel technical developments, and the effect of postprocessing imaging techniques and structured reporting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5

source CT scanner using 120 and 80 kV in a 77-year-old man who had undergone endovascular aneurysm repair and now presented with weak pulses. Virtual noncontrast images derived from the dual-energy CTA visualize the calcifications by virtually removing iodine. Depicted are calcifications in the external and internal iliac arteries without significant stenosis before (a) and after (b) virtual removal of the iodine contrast

Fig. 6
Fig. 7
Fig. 8
Fig. 9

source images of the lower extremity CTA are shown (from left to right). Images of the right lower extremity show moderate stenosis of the distal right superficial femoral artery and popliteal artery, occlusion of the right anterior tibial artery distally, and patent right posterior tibial and peroneal arteries. Images of the left lower extremity show moderate stenosis of the distal left superficial femoral artery and left popliteal artery and occluded left anterior tibial artery. The proximal and mid portions of the left posterior tibial artery are patent, with the distal portion showing moderate stenosis. Additionally, there is moderate stenosis in the left peroneal artery proximally, with severe stenosis distally

Fig. 10

source CT scanner using 140 and 80 kV. a Maximum intensity projection of the full scan volume provides a first overview, but arteries are partially obscured by overlying bones. b Maximum intensity projection after automatic dual-energy‒based bone removal gives an impression of the location of calcifications, vessel patency, and distal run-off. In particular, a focal high-grade stenosis of the proximal superficial femoral artery (white arrow) followed by a total occlusion (black arrow) and distal reconstitution via collaterals are visualized. c Maximum intensity projection after automatic calcification removal improves the visual impression of vessel patency in areas with calcifications (e.g., the right external iliac artery). d Volume rendering is another visualization technique helpful for an overview of location of calcifications, vessel patency, and distal run-off. For example, a proximal occlusion of the right anterior tibial artery is clearly depicted (arrowhead)

Similar content being viewed by others

References

  1. Hiatt WR, Goldstone J, Smith SC et al (2008) Atherosclerotic peripheral vascular disease symposium II: nomenclature for vascular diseases. In: Circulation. Lippincott Williams & Wilkins, pp 2826–2829

  2. Criqui MH, Aboyans V (2015) Epidemiology of peripheral artery disease. Circ Res 116:1509–1526. https://doi.org/10.1161/CIRCRESAHA.116.303849

    Article  CAS  PubMed  Google Scholar 

  3. Fowkes FGR, Rudan D, Rudan I et al (2013) Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet 382:1329–1340. https://doi.org/10.1016/S0140-6736(13)61249-0

    Article  PubMed  Google Scholar 

  4. Ergün E, Koşar P, Öztürk C et al (2011) Prevalence and extent of coronary artery disease determined by 64-slice CTA in patients with zero coronary calcium score. Int J Cardiovasc Imaging 27:451–458. https://doi.org/10.1007/s10554-010-9681-5

    Article  PubMed  Google Scholar 

  5. Pande RL, Perlstein TS, Beckman JA, Creager MA (2011) Secondary prevention and mortality in peripheral artery disease: National health and nutrition examination study, 1999 to 2004. Circulation 124:17–23. https://doi.org/10.1161/CIRCULATIONAHA.110.003954

    Article  PubMed  PubMed Central  Google Scholar 

  6. Selvin E, Erlinger TP (2004) Prevalence of and risk factors for peripheral arterial disease in the United States: results from the National Health and Nutrition Examination Survey, 1999–2000. Circulation 110:738–743. https://doi.org/10.1161/01.CIR.0000137913.26087.F0

    Article  PubMed  Google Scholar 

  7. Takx RAP, Partovi S, Ghoshhajra BB (2016) Imaging of atherosclerosis. Int J Cardiovasc Imaging 32:5–12. https://doi.org/10.1007/s10554-015-0730-y

    Article  PubMed  Google Scholar 

  8. Conte MS, Pomposelli FB, Clair DG et al (2015) Society for Vascular Surgery practice guidelines for atherosclerotic occlusive disease of the lower extremities: management of asymptomatic disease and claudication. J Vasc Surg 61:2S-41S. https://doi.org/10.1016/j.jvs.2014.12.009

    Article  PubMed  Google Scholar 

  9. Fernández-Friera L, Peñalvo JL, Fernández-Ortiz A et al (2015) Prevalence, vascular distribution, and multiterritorial extent of subclinical atherosclerosis in a middle-aged cohort the PESA (Progression of Early Subclinical Atherosclerosis) study. Circulation 131:2104–2113. https://doi.org/10.1161/CIRCULATIONAHA.114.014310

    Article  PubMed  Google Scholar 

  10. Laclaustra M, Casasnovas JA, Fernández-Ortiz A et al (2016) Femoral and carotid subclinical atherosclerosis association with risk factors and coronary calcium: the AWHS study. J Am Coll Cardiol 67:1263–1274. https://doi.org/10.1016/j.jacc.2015.12.056

    Article  PubMed  Google Scholar 

  11. Diehm N, Shang A, Silvestro A et al (2006) Association of cardiovascular risk factors with pattern of lower limb atherosclerosis in 2659 patients undergoing angioplasty. Eur J Vasc Endovasc Surg 31:59–63. https://doi.org/10.1016/j.ejvs.2005.09.006

    Article  CAS  PubMed  Google Scholar 

  12. Haltmayer M, Mueller T, Horvath W et al (2001) Impact of atherosclerotic risk factors on the anatomical distribution of peripheral arterial disease. Int Angiol 20:200–207

    CAS  PubMed  Google Scholar 

  13. Tullius T, Dalag L, Lorenz J (2018) Chronic mesenteric ischemia: clinical diagnosis, imaging characteristics, and endovascular management. Dig Dis Interv 02:217–222. https://doi.org/10.1055/s-0038-1668082

    Article  Google Scholar 

  14. Klein A, Bennett L, Ha C, Kirkwood M (2018) Surgical intervention for chronic mesenteric ischemia. Dig Dis Interv 02:223–230. https://doi.org/10.1055/s-0038-1668539

    Article  Google Scholar 

  15. Lin JS, Olson CM, Johnson ES, Whitlock EP (2013) The Ankle-Brachial index for peripheral artery disease screening and cardiovascular disease prediction among asymptomatic adults: a systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med 159:333. https://doi.org/10.7326/0003-4819-159-5-201309030-00007

    Article  PubMed  Google Scholar 

  16. Lijmer JG, Hunink MGM, Van Den Dungen JJAM et al (1996) ROC analysis of noninvasive tests for peripheral arterial disease. Ultrasound Med Biol 22:391–398. https://doi.org/10.1016/0301-5629(96)00036-1

    Article  CAS  PubMed  Google Scholar 

  17. Khan T, Farooqui F, Niazi K (2008) Critical review of the Ankle brachial index. Curr Cardiol Rev 4:101–106. https://doi.org/10.2174/157340308784245810

    Article  PubMed  PubMed Central  Google Scholar 

  18. Høyer C, Sandermann J, Petersen LJ (2013) The toe-brachial index in the diagnosis of peripheral arterial disease. J Vasc Surg 58:231–238. https://doi.org/10.1016/j.jvs.2013.03.044

    Article  PubMed  Google Scholar 

  19. Hashimoto T, Ichihashi S, Iwakoshi S, Kichikawa K (2016) Combination of pulse volume recording (PVR) parameters and ankle-brachial index (ABI) improves diagnostic accuracy for peripheral arterial disease compared with ABI alone. Hypertens Res 39:430–434. https://doi.org/10.1038/hr.2016.13

    Article  PubMed  Google Scholar 

  20. Patel MC, Levin DC, Parker L, Rao VM (2015) Have CT and MR angiography replaced catheter angiography in diagnosing peripheral arterial disease? J Am Coll Radiol 12:909–914. https://doi.org/10.1016/j.jacr.2015.04.020

    Article  PubMed  Google Scholar 

  21. Gerhard-Herman MD, Gornik HL, Barrett C et al (2017) 2016 AHA/ACC guideline on the management of patients with lower extremity peripheral artery disease: a report of the American college of cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 135:e726–e779

    PubMed  Google Scholar 

  22. Met R, Bipat S, Legemate DA et al (2009) Diagnostic performance of computed tomography angiography in peripheral arterial disease a systematic review and meta-analysis. J Am Med Assoc 301:415–424

    Article  CAS  Google Scholar 

  23. Sun Z (2006) Diagnostic accuracy of multislice CT angiography in peripheral arterial disease. J Vasc Interv Radiol 17:1915–1921

    Article  PubMed  Google Scholar 

  24. Fraioli F, Catalano C, Napoli A et al (2006) Low-dose multidetector-row CT angiography of the infra-renal aorta and lower extremity vessels: image quality and diagnostic accuracy in comparison with standard DSA. Eur Radiol 16:137–146. https://doi.org/10.1007/s00330-005-2812-z

    Article  PubMed  Google Scholar 

  25. Willmann JK, Baumert B, Schertler T et al (2005) Aortoiliac and lower extremity arteries assessed with 16-detector row CT angiography: prospective comparison with digital subtraction angiography. Radiology 236:1083–1093. https://doi.org/10.1148/radiol.2362040895

    Article  PubMed  Google Scholar 

  26. Shareghi S, Gopal A, Gul K et al (2009) Diagnostic accuracy of 64 multidetector computed tomographic angiography in peripheral vascular disease. Catheter Cardiovasc Interv. https://doi.org/10.1002/ccd.22228

    Article  Google Scholar 

  27. Rubin GD, Schmidt AJ, Logan LJ, Sofilos MC (2001) Multi-detector row CT angiography of lower extremity arterial inflow and runoff: initial experience. Radiology 221:146–158. https://doi.org/10.1148/radiol.2211001325

    Article  CAS  PubMed  Google Scholar 

  28. Tang GL, Chin J, Kibbe MR (2010) Advances in diagnostic imaging for peripheral arterial disease. Expert Rev Cardiovasc Ther 8:1447–1455

    Article  PubMed  Google Scholar 

  29. Fleischmann D, Hallett RL, Rubin GD (2006) CT angiography of peripheral arterial disease. J Vasc Interv Radiol 17:3–26

    Article  PubMed  Google Scholar 

  30. Qi L, Meinel FG, Zhou CS et al (2014) Image quality and radiation dose of lower extremity CT angiography using 70 kVp, high pitch acquisition and sinogram-affirmed iterative reconstruction. PLoS ONE 9:e99112. https://doi.org/10.1371/journal.pone.0099112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Assi AAN (2020) Image quality and radiation exposure with low-contrast-dose computed tomography angiography of the lower extremities. Polish J Radiol 85:e169–e173. https://doi.org/10.5114/pjr.2020.94297

    Article  Google Scholar 

  32. Almutairi A, Sun Z, Poovathumkadavi A, Assar T (2015) Dual energy CT angiography of peripheral arterial disease: feasibility of using lower contrast medium volume. PLoS ONE 10:e0139275. https://doi.org/10.1371/journal.pone.0139275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Horehledova B, Mihl C, Milanese G et al (2018) CT angiography in the lower extremity peripheral artery disease feasibility of an ultra-low volume contrast media protocol. Cardiovasc Intervent Radiol 41:1751–1764. https://doi.org/10.1007/s00270-018-1979-z

    Article  PubMed  PubMed Central  Google Scholar 

  34. Aschoff AJ, Catalano C, Kirchin MA et al (2017) Low radiation dose in computed tomography: the role of iodine. Br J Radiol 90:20170079. https://doi.org/10.1259/bjr.20170079

    Article  PubMed  PubMed Central  Google Scholar 

  35. van Hamersvelt RW, Eijsvoogel NG, Mihl C et al (2018) Contrast agent concentration optimization in CTA using low tube voltage and dual-energy CT in multiple vendors: a phantom study. Int J Cardiovasc Imaging 34:1265–1275. https://doi.org/10.1007/s10554-018-1329-x

    Article  PubMed  Google Scholar 

  36. Noël PB, Renger B, Fiebich M et al (2013) Does iterative reconstruction lower CT radiation dose: evaluation of 15,000 examinations. PLoS ONE 8:e81141. https://doi.org/10.1371/journal.pone.0081141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Primak AN, Ramirez Giraldo JC, Liu X et al (2009) Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys 36:1359–1369. https://doi.org/10.1118/1.3083567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Levin DC, Gardiner GA, Parker L, Rao VM (2016) Vascular ultrasound and noninvasive physiological testing for peripheral arterial disease: are these tests being overused? J Am Coll Radiol 13:249–254. https://doi.org/10.1016/j.jacr.2015.08.024

    Article  PubMed  Google Scholar 

  39. Collins R, Cranny G, Burch J et al (2007) A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease. Health Technol Assess. https://doi.org/10.3310/hta11200

    Article  PubMed  Google Scholar 

  40. Eiberg JP, Grønvall Rasmussen JB, Hansen MA, Schroeder TV (2010) Duplex ultrasound scanning of peripheral arterial disease of the lower limb. Eur J Vasc Endovasc Surg 40:507–512. https://doi.org/10.1016/j.ejvs.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  41. Favaretto E, Pili C, Amato A et al (2007) Analysis of agreement between Duplex ultrasound scanning and arteriography in patients with lower limb artery disease. J Cardiovasc Med 8:337–341. https://doi.org/10.2459/01.JCM.0000268124.51543.b2

    Article  Google Scholar 

  42. Hingorani AP, Ascher E, Marks N et al (2008) Limitations of and lessons learned from clinical experience of 1020 duplex arteriography. Vascular 16:147–153. https://doi.org/10.2310/6670.2008.00014

    Article  PubMed  Google Scholar 

  43. Martinelli O, Alunno A, Jabbour J et al (2021) Duplex ultrasound as a reliable alternative to CT angiography for treatment planning of Peripheral Artery Disease. Int Angiol. https://doi.org/10.23736/S0392-9590.21.04524-7

    Article  PubMed  Google Scholar 

  44. Ota H, Takase K, Rikimaru H et al (2005) Quantitative vascular measurements in arterial occlusive disease. Radiographics 25:1141–1158. https://doi.org/10.1148/rg.255055014

    Article  PubMed  Google Scholar 

  45. Pollak AW, Norton PT, Kramer CM (2012) Multimodality imaging of lower extremity peripheral arterial disease current role and future directions. Circ Cardiovasc Imaging 5:797–807. https://doi.org/10.1161/CIRCIMAGING.111.970814

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ouwendijk R, De Vries M, Pattynama PMT et al (2005) Imaging peripheral arterial disease: a randomized controlled trial comparing contrast-enhanced MR angiography and multi-detector row CT angiography. Radiology 236:1094–1103. https://doi.org/10.1148/radiol.2363041140

    Article  PubMed  Google Scholar 

  47. Jens S, Koelemay MJW, Reekers JA, Bipat S (2013) Diagnostic performance of computed tomography angiography and contrast-enhanced magnetic resonance angiography in patients with critical limb ischaemia and intermittent claudication: systematic review and meta-analysis. Eur Radiol 23:3104–3114. https://doi.org/10.1007/s00330-013-2933-8

    Article  PubMed  Google Scholar 

  48. Riffel P, Haubenreisser H, Higashigaito K et al (2018) Combined static and dynamic computed tomography angiography of peripheral artery occlusive disease: comparison with magnetic resonance angiography. Cardiovasc Intervent Radiol 41:1205–1213. https://doi.org/10.1007/s00270-018-1911-6

    Article  PubMed  Google Scholar 

  49. Mathur M, Jones JR, Weinreb JC (2020) Gadolinium deposition and nephrogenic systemic fibrosis: a radiologist’s primer. Radiographics 40:153–162. https://doi.org/10.1148/rg.2020190110

    Article  PubMed  Google Scholar 

  50. Partovi S, Rasmus M, Schulte AC et al (2013) ECG-triggered non-enhanced MR angiography of peripheral arteries in comparison to DSA in patients with peripheral artery occlusive disease. Magn Reson Mater Phys Biol Med 26:271–280. https://doi.org/10.1007/s10334-012-0352-5

    Article  CAS  Google Scholar 

  51. Mathew RC, Kramer CM (2018) Recent advances in magnetic resonance imaging for peripheral artery disease. Vasc Med 23:143–152

    Article  PubMed  PubMed Central  Google Scholar 

  52. Varga-Szemes A, Wichmann JL, Schoepf UJ et al (2017) Accuracy of noncontrast quiescent-interval single-shot lower extremity MR angiography versus CT angiography for diagnosis of peripheral artery disease. JACC Cardiovasc Imaging 10:1116–1124. https://doi.org/10.1016/j.jcmg.2016.09.030

    Article  PubMed  Google Scholar 

  53. Wagner M, Knobloch G, Gielen M et al (2015) Nonenhanced peripheral MR-angiography (MRA) at 3 Tesla: evaluation of quiescent-interval single-shot MRA in patients undergoing digital subtraction angiography. Int J Cardiovasc Imaging 31:841–850. https://doi.org/10.1007/s10554-015-0612-3

    Article  PubMed  Google Scholar 

  54. Varga-Szemes A, Penmetsa M, Emrich T et al (2020) Diagnostic accuracy of non-contrast quiescent-interval slice-selective (QISS) MRA combined with MRI-based vascular calcification visualization for the assessment of arterial stenosis in patients with lower extremity peripheral artery disease. Eur Radiol 31:2778–2787. https://doi.org/10.1007/s00330-020-07386-4

    Article  CAS  PubMed  Google Scholar 

  55. Itoga NK, Ho VT, Tran K et al (2020) Preprocedural cross-sectional imaging prior to percutaneous peripheral arterial disease interventions. Vasc Endovascular Surg 54:97–101. https://doi.org/10.1177/1538574419887585

    Article  PubMed  Google Scholar 

  56. De Vos MS, Hawkins AT, Hevelone ND et al (2014) National variation in the utilization of alternative imaging in peripheral arterial disease. J Vasc Surg. https://doi.org/10.1016/j.jvs.2013.11.059

    Article  PubMed  Google Scholar 

  57. Keeling A, Keeling AN, Farrelly C et al (2011) Technical considerations for lower limb multidetector computed tomographic angiography. Vasc Med 16:131–143. https://doi.org/10.1177/1358863X10388347

    Article  PubMed  Google Scholar 

  58. Johnson PT, Fishman EK (2006) IV contrast selection for MDCT: current thoughts and practice. Am J Roentgenol 186:406–415

    Article  Google Scholar 

  59. Swanberg J, Nyman R, Magnusson A, Wanhainen A (2014) Selective intra-arterial dual-energy CT angiography (s-CTA) in lower extremity arterial occlusive disease. Eur J Vasc Endovasc Surg 48:325–329. https://doi.org/10.1016/j.ejvs.2014.05.013

    Article  CAS  PubMed  Google Scholar 

  60. Özgen A, Sanioğlu S, Bingöl UA (2016) Intra-arterial ultra-low-dose CT angiography of lower extremity in diabetic patients. Cardiovasc Intervent Radiol 39:1165–1169. https://doi.org/10.1007/s00270-016-1358-6

    Article  PubMed  Google Scholar 

  61. Fleischmann D, Rubin GD (2005) Quantification of intravenously administered contrast medium transit through the peripheral arteries: Implications for CT angiography. Radiology 236:1076–1082. https://doi.org/10.1148/radiol.2363041392

    Article  PubMed  Google Scholar 

  62. Itoga NK, Kim T, Sailer AM et al (2017) Lower extremity computed tomography angiography can help predict technical success of endovascular revascularization in the superficial femoral and popliteal artery. In: Journal of Vascular Surgery. Mosby Inc., pp 835–843

  63. Meyer BC, Werncke T, Foert E et al (2010) Do the cardiovascular risk profile and the degree of arterial wall calcification influence the performance of MDCT angiography of lower extremity arteries? Eur Radiol 20:497–505. https://doi.org/10.1007/s00330-009-1555-7

    Article  CAS  PubMed  Google Scholar 

  64. Li P, Xu L, Yang L et al (2018) Blooming artifact reduction in coronary artery calcification by a new De-blooming algorithm: initial study. Sci Rep 8:1–8. https://doi.org/10.1038/s41598-018-25352-5

    Article  CAS  Google Scholar 

  65. Renker M, Nance JW, Schoepf UJ et al (2011) Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology 260:390–399. https://doi.org/10.1148/radiol.11103574

    Article  PubMed  Google Scholar 

  66. Hoe JWM, Toh KH (2007) A practical guide to reading CT coronary angiograms-How to avoid mistakes when assessing for coronary stenoses. Int J Cardiovasc Imaging 23:617–633

    Article  PubMed  Google Scholar 

  67. Achenbach S, Boehmer K, Pflederer T et al (2010) Influence of slice thickness and reconstruction kernel on the computed tomographic attenuation of coronary atherosclerotic plaque. J Cardiovasc Comput Tomogr 4:110–115. https://doi.org/10.1016/j.jcct.2010.01.013

    Article  PubMed  Google Scholar 

  68. Grajo JR, Patino M, Prochowski A, Sahani DV (2016) Dual energy CT in practice: Basic principles and applications. Appl Radiol 45:6–12

    Google Scholar 

  69. Lambert JW, Sun Y, Gould RG et al (2017) An image-domain contrast material extraction method for dual-energy computed tomography. Invest Radiol 52:245–254. https://doi.org/10.1097/RLI.0000000000000335

    Article  PubMed  PubMed Central  Google Scholar 

  70. Mannil M, Ramachandran J, Vittoria de Martini I et al (2017) Modified dual-energy algorithm for calcified plaque removal. Invest Radiol 52:680–685. https://doi.org/10.1097/RLI.0000000000000391

    Article  PubMed  Google Scholar 

  71. De Santis D, De Cecco CN, Schoepf UJ et al (2019) Modified calcium subtraction in dual-energy CT angiography of the lower extremity runoff: impact on diagnostic accuracy for stenosis detection. Eur Radiol 29:4783–4793. https://doi.org/10.1007/s00330-019-06032-y

    Article  PubMed  Google Scholar 

  72. Thomas C, Korn A, Ketelsen D et al (2010) Automatic lumen segmentation in calcified plaques: dual-energy CT versus standard reconstructions in comparison with digital subtraction angiography. Am J Roentgenol 194:1590–1595. https://doi.org/10.2214/AJR.09.3550

    Article  Google Scholar 

  73. Ahmed S, Raman SP, Fishman EK (2016) Three-dimensional MDCT angiography for the assessment of arteriovenous grafts and fistulas in hemodialysis access. Diagn Interv Imaging 97:297–306

    Article  CAS  PubMed  Google Scholar 

  74. Dalrymple NC, Prasad SR, Freckleton MW, Chintapalli KN (2005) Informatics in radiology (infoRAD): introduction to the language of three-dimensional imaging with multidetector CT. Radiographics 25:1409–1428. https://doi.org/10.1148/rg.255055044

    Article  PubMed  Google Scholar 

  75. Addis KA, Hopper KD, Iyriboz TA et al (2001) CT angiography. Am J Roentgenol 177:1171–1176. https://doi.org/10.2214/ajr.177.5.1771171

    Article  CAS  Google Scholar 

  76. Danad I, Hartaigh Ó, B, Min JK, (2015) Dual-energy computed tomography for detection of coronary artery disease. Expert Rev Cardiovasc Ther 13:1345–1356. https://doi.org/10.1586/14779072.2015.1102055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Henzler T, Fink C, Schoenberg SO, Schoepf UJ (2012) Dual-energy CT: radiation dose aspects. Am J Roentgenol 199:S16–S25

    Article  Google Scholar 

  78. Shinagare AB, Lacson R, Boland GW et al (2019) Radiologist preferences, agreement, and variability in phrases used to convey diagnostic certainty in radiology reports. J Am Coll Radiol 16:458–464. https://doi.org/10.1016/j.jacr.2018.09.052

    Article  PubMed  Google Scholar 

  79. Cheng EM, Dawn Bravata MM, El-Saden S et al (2013) Carotid artery stenosis: wide variability in reporting formats—a review of 127 Veterans Affairs Medical Centers. Radiology 266:289–294. https://doi.org/10.1148/radiol.12120453

    Article  PubMed  PubMed Central  Google Scholar 

  80. Langlotz CP (2006) RadLex: a new method for indexing online educational materials. Radiographics 26:1595–1597. https://doi.org/10.1148/rg.266065168

    Article  PubMed  Google Scholar 

  81. Sabel BO, Plum JL, Czihal M et al (2018) Structured reporting of CT angiography runoff examinations of the lower extremities. Eur J Vasc Endovasc Surg 55:679–687. https://doi.org/10.1016/j.ejvs.2018.01.026

    Article  PubMed  Google Scholar 

  82. Larson DB, Towbin AJ, Pryor RM, Donnelly LF (2013) Improving consistency in radiology reporting through the use of department-wide standardized structured reporting. Radiology 267:240–250. https://doi.org/10.1148/radiol.12121502

    Article  PubMed  Google Scholar 

  83. Buckley BW, Daly L, Allen GN, Ridge CA (2018) Recall of structured radiology reports is significantly superior to that of unstructured reports. Br J Radiol 91:20170670. https://doi.org/10.1259/bjr.20170670

    Article  PubMed  PubMed Central  Google Scholar 

  84. Schwartz LH, Panicek DM, Berk AR et al (2011) Improving communication of diagnostic radiology findings through structured reporting. Radiology 260:174–181. https://doi.org/10.1148/radiol.11101913

    Article  PubMed  PubMed Central  Google Scholar 

  85. Reiner BI, Knight N, Siegel EL (2007) Radiology reporting, past, present, and future: the radiologist’s perspective. J Am Coll Radiol 4:313–319. https://doi.org/10.1016/j.jacr.2007.01.015

    Article  PubMed  Google Scholar 

  86. Reiner BI (2009) The challenges, opportunities, and imperative of structured reporting in medical imaging. J Digit Imaging 22(6):562–568

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasan Partovi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The manuscript does not contain clinical studies or patient datasets.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shwaiki, O., Rashwan, B., Fink, M.A. et al. Lower extremity CT angiography in peripheral arterial disease: from the established approach to evolving technical developments. Int J Cardiovasc Imaging 37, 3101–3114 (2021). https://doi.org/10.1007/s10554-021-02277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-021-02277-1

Keywords

Navigation