Skip to main content
Log in

Diagnostic performance of computed tomography angiography and contrast-enhanced magnetic resonance angiography in patients with critical limb ischaemia and intermittent claudication: systematic review and meta-analysis

  • Magnetic Resonance
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objective

To evaluate the diagnostic performance of computed tomography angiography (CTA) and contrast-enhanced magnetic resonance angiography (CE-MRA) in detecting haemodynamically significant arterial stenosis or occlusion in patients with critical limb ischaemia (CLI) or intermittent claudication (IC).

Methods

Medline and Embase were searched for studies comparing CTA or CE-MRA with digital subtraction angiography as a reference standard, including patients with CLI or IC. Outcome measures were aortotibial arterial stenosis of more than 50 % or occlusion. Methodological quality of studies was assessed using QUADAS.

Results

Out of 5,693 articles, 12 CTA and 30 CE-MRA studies were included, respectively evaluating 673 and 1,404 participants. Summary estimates of sensitivity and specificity were respectively 96 % (95 % CI, 93–98 %) and 95 % (95 % CI, 92–97 %) for CTA, and 93 % (95 % CI, 91–95 %) and 94 % (95 % CI, 93–96 %) for CE-MRA. Regression analysis showed that the prevalence of CLI in individual studies was not an independent predictor of sensitivity and specificity for either technique. Methodological quality of studies was moderate to good.

Conclusion

CTA and CE-MRA are accurate techniques for evaluating disease severity of aortotibial arteries in patients with CLI or IC. No significant differences in the diagnostic performance of the two techniques between patients with CLI and IC were found.

Key Points

• Computed tomography and contrast-enhanced magnetic resonance angiography can both demonstrate arterial disease.

• CTA and CE-MRA can both accurately evaluate arteries in peripheral arterial disease.

• Diagnostic performances of critical limb ischaemia and intermittent claudication are not different.

• Separate imaging technique of tibial arteries by CE-MRA is preferred.

• CTA and CE-MRA can distinguish confidently between high-grade stenoses and occlusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CE-MRA:

contrast-enhanced magnetic resonance angiography

CLI:

critical limb ischaemia

CTA:

computed tomography angiography

IC:

intermittent claudication

PAD:

peripheral arterial disease

References

  1. Norgren L, Hiatt WR, Dormandy JA, Nehler MR, Harris KA, Fowkes FG (2007) Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 45:S5–67

    Article  PubMed  Google Scholar 

  2. Singh H, Cardella JF, Cole PE et al (2003) Quality improvement guidelines for diagnostic arteriography. J Vasc Interv Radiol 14:S283–S288

    PubMed  Google Scholar 

  3. Met R, Bipat S, Legemate DA, Reekers JA, Koelemay MJ (2009) Diagnostic performance of computed tomography angiography in peripheral arterial disease: a systematic review and meta-analysis. JAMA 301:415–424

    Article  PubMed  CAS  Google Scholar 

  4. Menke J, Larsen J (2010) Meta-analysis: accuracy of contrast-enhanced magnetic resonance angiography for assessing steno-occlusions in peripheral arterial disease. Ann Intern Med 153:325–334

    Article  PubMed  Google Scholar 

  5. Leiner T, Kessels AG, Schurink GW et al (2004) Comparison of contrast-enhanced magnetic resonance angiography and digital subtraction angiography in patients with chronic critical ischemia and tissue loss. Invest Radiol 39:435–444

    Article  PubMed  Google Scholar 

  6. Dorweiler B, Neufang A, Kreitner KF, Schmiedt W, Oelert H (2002) Magnetic resonance angiography unmasks reliable target vessels for pedal bypass grafting in patients with diabetes mellitus. J Vasc Surg 35:766–772

    Article  PubMed  Google Scholar 

  7. Cao P, Eckstein HH, De RP et al (2011) Chapter II: diagnostic methods. Eur J Vasc Endovasc Surg 42(Suppl 2):S13–S32

    Article  PubMed  Google Scholar 

  8. Matzke S, Lepantalo M (2001) Claudication does not always precede critical leg ischemia. Vasc Med 6:77–80

    PubMed  CAS  Google Scholar 

  9. Ozkan U, Oguzkurt L, Tercan F (2009) Atherosclerotic risk factors and segmental distribution in symptomatic peripheral artery disease. J Vasc Interv Radiol 20:437–441

    Article  PubMed  Google Scholar 

  10. Graziani L, Silvestro A, Bertone V et al (2007) Vascular involvement in diabetic subjects with ischemic foot ulcer: a new morphologic categorization of disease severity. Eur J Vasc Endovasc Surg 33:453–460

    Article  PubMed  CAS  Google Scholar 

  11. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ 339:332–336

    Article  Google Scholar 

  12. Collins R, Cranny G, Burch J et al (2007) A systematic review of duplex ultrasound, magnetic resonance angiography and computed tomography angiography for the diagnosis and assessment of symptomatic, lower limb peripheral arterial disease. Health Technol Assess 11:iii–xiii

    Google Scholar 

  13. Whiting P, Rutjes AW, Reitsma JB, Bossuyt PM, Kleijnen J (2003) The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews. BMC Med Res Methodol 3:25

    Article  PubMed  Google Scholar 

  14. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  Google Scholar 

  15. Altman DG (1991) Practical statistics for medical research, 1st edn. Chapman and Hall, London

    Google Scholar 

  16. Bipat S, Zwinderman AH, Bossuyt PM, Stoker J (2007) Multivariate random-effects approach: for meta-analysis of cancer staging studies. Acad Radiol 14:974–984

    Article  PubMed  Google Scholar 

  17. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Control 19:716–723

    Article  Google Scholar 

  18. Egger M, Davey SG, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  PubMed  CAS  Google Scholar 

  19. Glas AS, Lijmer JG, Prins MH, Bonsel GJ, Bossuyt PM (2003) The diagnostic odds ratio: a single indicator of test performance. J Clin Epidemiol 56:1129–1135

    Article  PubMed  Google Scholar 

  20. Fotiadis N, Kyriakides C, Bent C, Vorvolakos T, Matson M (2011) 64-section CT angiography in patients with critical limb ischaemia and severe claudication: comparison with digital subtractive angiography. Clin Radiol 66:945–952

    Article  PubMed  CAS  Google Scholar 

  21. Kau T, Eicher W, Reiterer C et al (2011) Dual-energy CT angiography in peripheral arterial occlusive disease-accuracy of maximum intensity projections in clinical routine and subgroup analysis. Eur Radiol 21:1677–1686

    Article  PubMed  Google Scholar 

  22. Li G-C, Deng G, Qin Y-L et al (2008) The comparative study of 64-slices spiral CT angiography with DSA hi lower extremity arterial occlusive diseases. J Interv Radiol 17:336–339

    Google Scholar 

  23. Cia S, Jiang H, Cui X-Y, Wang D-W, Sun Y-T (2007) Application of multi-slice spiral CT angiography in diagnosis of arteriosclerotic occlusive disease of lower extremity. Chin J Med Imaging Technol 23:1022–1025

    Google Scholar 

  24. Li X-M, Xiao Y, Tian J-M, Guang J-Z, Tian J-L, Gong J (2007) The diagnostic value of 64-multislice CT in patients with peripheral arterial occlusive diseases: comparison with digital subtraction angiography. J Interv Radiol 16:371–374

    CAS  Google Scholar 

  25. Bui TD, Gelfand D, Whipple S et al (2005) Comparison of CT and catheter arteriography for evaluation of peripheral arterial disease. Vasc Endovascular Surg 39:481–490

    Article  PubMed  Google Scholar 

  26. Willmann JK, Baumert B, Schertler T et al (2005) Aortoiliac and lower extremity arteries assessed with 16-detector row CT angiography: prospective comparison with digital subtraction angiography. Radiology 236:1083–1093

    Article  PubMed  Google Scholar 

  27. Catalano C, Fraioli F, Laghi A et al (2004) Infrarenal aortic and lower-extremity arterial disease: diagnostic performance of multi-detector row CT angiography. Radiology 231:555–563

    Article  PubMed  Google Scholar 

  28. Martin ML, Tay KH, Flak B et al (2003) Multidetector CT angiography of the aortoiliac system and lower extremities: a prospective comparison with digital subtraction angiography. Am J Roentgenol 180:1085–1091

    Article  Google Scholar 

  29. Ofer A, Nitecki SS, Linn S et al (2003) Multidetector CT angiography of peripheral vascular disease: a prospective comparison with intraarterial digital subtraction angiography. Am J Roentgenol 180:719–724

    Article  Google Scholar 

  30. Puls R, Knollmann F, Werk M et al (2001) Multi-slice spiral CT: 3D CT angiography for evaluating therapeutically relevant stenosis in peripheral arterial occlusive disease. Rontgenpraxis 54:141–147

    PubMed  CAS  Google Scholar 

  31. Rieker O, Duber C, Neufang A, Pitton M, Schweden F, Thelen M (1997) CT angiography versus intraarterial digital subtraction angiography for assessment of aortoiliac occlusive disease. Am J Roentgenol 169:1133–1138

    Article  CAS  Google Scholar 

  32. Anzidei M, Napoli A, Zaccagna F et al (2011) First-pass and high-resolution steady-state magnetic resonance angiography of the peripheral arteries with gadobenate dimeglumine: an assessment of feasibility and diagnostic performance. Invest Radiol 46:307–316

    PubMed  CAS  Google Scholar 

  33. Bui BT, Miller S, Mildenberger P, Sam A, Sheng R (2010) Comparison of contrast-enhanced MR angiography to intraarterial digital subtraction angiography for evaluation of peripheral arterial occlusive disease: results of a phase III multicenter trial. J Magn Reson Imaging 31:1402–1410

    Article  PubMed  Google Scholar 

  34. Gerretsen SC, le Maire TF, Miller S et al (2010) Multicenter, double-blind, randomized, intraindividual crossover comparison of gadobenate dimeglumine and gadopentetate dimeglumine for MR angiography of peripheral arteries. Radiology 255:988–1000

    Article  PubMed  Google Scholar 

  35. Wang CC, Liang HL, Hsiao CC et al (2010) Single-dose time-resolved contrast enhanced hybrid MR angiography in diagnosis of peripheral arterial disease: compared with digital subtraction angiography. J Magn Reson Imaging 32:935–942

    Article  PubMed  Google Scholar 

  36. Poschenrieder F, Hamer OW, Herold T et al (2009) Diagnostic accuracy of intraarterial and i.v. MR angiography for the detection of stenoses of the infrainguinal arteries. Am J Roentgenol 192:117–121

    Article  Google Scholar 

  37. Owen AR, Robertson IR, Annamalai G et al (2009) Critical lower-limb ischemia: the diagnostic performance of dual-phase injection MR angiography (including high-resolution distal imaging) compared with digital subtraction angiography. J Vasc Interv Radiol 20:165–172

    Article  PubMed  Google Scholar 

  38. Berg F, Bangard C, Bovenschulte H et al (2008) Feasibility of peripheral contrast-enhanced magnetic resonance angiography at 3.0 Tesla with a hybrid technique: comparison with digital subtraction angiography. Invest Radiol 43:642–649

    Article  PubMed  Google Scholar 

  39. Andreisek G, Pfammatter T, Goepfert K et al (2007) Peripheral arteries in diabetic patients: standard bolus-chase and time-resolved MR angiography. Radiology 242:610–620

    Article  PubMed  Google Scholar 

  40. Diehm N, Kickuth R, Baumgartner I et al (2007) Magnetic resonance angiography in infrapopliteal arterial disease: prospective comparison of 1.5 and 3 Tesla magnetic resonance imaging. Invest Radiol 42:467–476

    Article  PubMed  Google Scholar 

  41. Deutschmann HA, Schoellnast H, Portugaller HR et al (2006) Routine use of three-dimensional contrast-enhanced moving-table MR angiography in patients with peripheral arterial occlusive disease: comparison with selective digital subtraction angiography. Cardiovasc Intervent Radiol 29:762–770

    Article  PubMed  Google Scholar 

  42. Gjonnaess E, Morken B, Sandbaek G et al (2006) Gadolinium-enhanced magnetic resonance angiography, colour duplex and digital subtraction angiography of the lower limb arteries from the aorta to the tibio-peroneal trunk in patients with intermittent claudication. Eur J Vasc Endovasc Surg 31:53–58

    Article  PubMed  CAS  Google Scholar 

  43. Janka R, Fellner C, Wenkel E, Lang W, Bautz W, Fellner FA (2005) Contrast-enhanced MR angiography of peripheral arteries including pedal vessels at 1.0 T: feasibility study with dedicated peripheral angiography coil. Radiology 235:319–326

    Article  PubMed  Google Scholar 

  44. Lapeyre M, Kobeiter H, Desgranges P, Rahmouni A, Becquemin JP, Luciani A (2005) Assessment of critical limb ischemia in patients with diabetes: comparison of MR angiography and digital subtraction angiography. Am J Roentgenol 185:1641–1650

    Article  Google Scholar 

  45. Leiner T, Kessels AG, Nelemans PJ et al (2005) Peripheral arterial disease: comparison of color duplex US and contrast-enhanced MR angiography for diagnosis. Radiology 235:699–708

    Article  PubMed  Google Scholar 

  46. Schmitt R, Coblenz G, Cherevatyy O et al (2005) Comprehensive MR angiography of the lower limbs: a hybrid dual-bolus approach including the pedal arteries. Eur Radiol 15:2513–2524

    Article  PubMed  CAS  Google Scholar 

  47. de Vries M, Nijenhuis RJ, Hoogeveen RM, de Haan MW, van Engelshoven JM, Leiner T (2005) Contrast-enhanced peripheral MR angiography using SENSE in multiple stations: feasibility study. J Magn Reson Imaging 21:37–45

    Article  PubMed  Google Scholar 

  48. Bezooijen R, van den Bosch HC, Tielbeek AV et al (2004) Peripheral arterial disease: sensitivity-encoded multiposition MR angiography compared with intraarterial angiography and conventional multiposition MR angiography. Radiology 231:263–271

    Article  PubMed  Google Scholar 

  49. Cronberg CN, Sjoberg S, Albrechtsson U et al (2003) Peripheral arterial disease. Contrast-enhanced 3D MR angiography of the lower leg and foot compared with conventional angiography. Acta Radiol 44:59–66

    PubMed  CAS  Google Scholar 

  50. Huber A, Scheidler J, Wintersperger B et al (2003) Moving-table MR angiography of the peripheral runoff vessels: comparison of body coil and dedicated phased array coil systems. Am J Roentgenol 180:1365–1373

    Article  CAS  Google Scholar 

  51. Steffens JC, Schafer FK, Oberscheid B et al (2003) Bolus-chasing contrast-enhanced 3D MRA of the lower extremity. Comparison with intraarterial DSA. Acta Radiol 44:185–192

    Article  PubMed  CAS  Google Scholar 

  52. Wyttenbach R, Gianella S, Alerci M, Braghetti A, Cozzi L, Gallino A (2003) Prospective blinded evaluation of Gd-DOTA-versus Gd-BOPTA-enhanced peripheral MR angiography, as compared with digital subtraction angiography. Radiology 227:261–269

    Article  PubMed  Google Scholar 

  53. Lenhart M, Herold T, Volk M et al (2000) Contrast media-enhanced MR angiography of the lower extremity arteries using a dedicated peripheral vascular coil system. First clinical results Rofo 172:992–999

    Article  CAS  Google Scholar 

  54. Lundin P, Svensson A, Henriksen E et al (2000) Imaging of aortoiliac arterial disease. Duplex ultrasound and MR angiography versus digital subtraction angiography. Acta Radiol 41:125–132

    Article  PubMed  CAS  Google Scholar 

  55. Sueyoshi E, Sakamoto I, Matsuoka Y, Hayashi H, Hayashi K (2000) Symptomatic peripheral vascular tree stenosis. Comparison of subtracted and nonsubtracted 3D contrast-enhanced MR angiography with fat suppression. Acta Radiol 41:133–138

    Article  PubMed  CAS  Google Scholar 

  56. Lenhart M, Djavidani B, Volk M et al (1999) Contrast medium-enhanced MR angiography of the pelvic and leg vessels with an automated table-feed technique. Rofo 171:442–449

    Article  PubMed  CAS  Google Scholar 

  57. Sueyoshi E, Sakamoto I, Matsuoka Y et al (1999) Aortoiliac and lower extremity arteries: comparison of three-dimensional dynamic contrast-enhanced subtraction MR angiography and conventional angiography. Radiology 210:683–688

    PubMed  CAS  Google Scholar 

  58. Winterer JT, Laubenberger J, Scheffler K et al (1999) Contrast-enhanced subtraction MR angiography in occlusive disease of the pelvic and lower limb arteries: results of a prospective intraindividual comparative study with digital subtraction angiography in 76 patients. J Comput Assist Tomogr 23:583–589

    Article  PubMed  CAS  Google Scholar 

  59. Laissy JP, Debray MP, Menegazzo D et al (1998) Prospective evaluation of peripheral arterial occlusive disease by 2D MR subtraction angiography. J Magn Reson Imaging 8:1060–1065

    Article  PubMed  CAS  Google Scholar 

  60. Rofsky NM, Johnson G, Adelman MA, Rosen RJ, Krinsky GA, Weinreb JC (1997) Peripheral vascular disease evaluated with reduced-dose gadolinium-enhanced MR angiography. Radiology 205:163–169

    PubMed  CAS  Google Scholar 

  61. Li J, Zhao J-G, Zhu Y-Q, Li M-H, Wang J, Qiao R-H (2011) Evaluation of diabetic peripheral arterial disease in lower limb by using 3.0 T contrast-enhanced MR angiography with simultaneous calf compression. J Interv Radiol 20:231–236

    CAS  Google Scholar 

  62. Wu Q-Y, Lin J, Li D, Zeng M-S (2011) Imaging evaluation of calf arteries in patients with peripheral arterial occlusive disease by using time-resolved angiography with interleaved stochastic trajectories on MR scanner. Chin J Radiol 45:560–565

    Google Scholar 

  63. Zhang L, Chang J, Shi D-C et al (2010) An in vitro experimental study and clinical applications of MR angiography with low-dose contrast agent of lower limb arteries at 3.0 T. Chin J Radiol 44:1078–1083

    Google Scholar 

  64. Li D-W, Guo W-L, Lu Z-M, Qi W-X, Guo Q-Y (2009) Application of energy subtract angiography of dual source CT in diagnosis of arterial diseases of the lower extremities. Chin J Med Imaging Technol 25:1806–1809

    Google Scholar 

  65. Yang M, Teng G-J, Liu B, Wu M, Jin J-Y, Deng G (2008) Imaging technique and postprocessing of lower extremity arteries using 64-slice CT. J Interv Radiol 17:353–356

    Google Scholar 

  66. Yuan F, Liu Y-S, Dong S-Y, Zhao J, Feng K-L (2008) Diagnostic value of 64-slice computed tomography angiography for peripheral arterial occlusive diseases. Chin J Med Imaging Technol 24:1767–1770

    Google Scholar 

  67. Wang G-Y, Zhao B, Wang G-B, Zhang Z-F, Qiu X-L (2007) Three-dimensional contrast-enhanced MR angiography in the classification of peripheral arterial occlusive disease. Chin J Radiol 41:598–601

    Google Scholar 

  68. Yuan F, Liu Y-S, Long M-M, Yuan B, Gu X, Gao G-F (2006) Multiposition dynamic contrast enhanced MR angiography in peripheral vessel diseases at 3.0T MR. Chin J Med Imaging Technol 22:726–729

    Google Scholar 

  69. Volodiukhin MI, Ibatullin MM, Mikhailov IM, Malinovskii MN, Ignat'ev IM, Bredikhin RA (2005) Combined bolus magnetic resonance angiography and two-dimensional time-of-flight magnetic resonance angiography in patients with occlusive diseases of lower limb arteries. Angiol Sosud Khir 11:29–36

    PubMed  Google Scholar 

  70. Saito Y, Noda H, Itabashi Y et al (2004) Table-moving MRA of the lower extremities in patients with arterial occlusive disease. Japan J Clin Radiol 49:547–554

    Google Scholar 

  71. Zhang L, Jin Z, Xu Z-R (2004) Diagnostic value of magnetic resonance angiography for diabetic foot and arterial disease of lower leg. Chin J Clin Rehabil 8:3626–3627

    Google Scholar 

  72. Tomihira A, Hino Y, Sugihara M (2002) Stepping table gadolinium-enhanced three-dimensional MR angiography in arterial occlusive disease of the pelvic and lower extremity arteries. Japan J Clin Radiol 47:525–533

    Google Scholar 

  73. Matsumura K, Sato K, Hashida K, Utsumi N, Ishizawa T (2001) Contrast-enhanced subtraction MR angiography of the systemic aorta and lower extremity arteries for vascular intervention: usefulness of stepping-table method on a 0.5 T system. Japan J Interv Cardiol 16:130–136

    Google Scholar 

Download references

Acknowledgements

Joost Daams, MA (clinical librarian at Academic Medical Center Amsterdam, the Netherlands), provided assistance with the study search. Mr Daams did not receive compensation for his contribution. The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sjoerd Jens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 555 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jens, S., Koelemay, M.J.W., Reekers, J.A. et al. Diagnostic performance of computed tomography angiography and contrast-enhanced magnetic resonance angiography in patients with critical limb ischaemia and intermittent claudication: systematic review and meta-analysis. Eur Radiol 23, 3104–3114 (2013). https://doi.org/10.1007/s00330-013-2933-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-013-2933-8

Keywords

Navigation