Skip to main content

Advertisement

Log in

Immune microenvironment in different molecular subtypes of ductal breast carcinoma

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Ductal breast carcinoma as a heterogeneous disease has different molecular subtypes associated with clinical prognosis and patients’ survival. The role of immune system as a consistent part of the tumor microenvironment (TME) has been documented in progression of ductal breast carcinoma. Here, we aimed to describe the important immune cells and the immune system-associated molecules in Ductal Carcinoma In situ (DCIS) and Invasive Ductal Carcinoma (IDC) with special emphasis on their associations with different molecular subtypes and patients’ prognosis.

Results

The immune cells have a dual role in breast cancer (BC) microenvironment depending on the molecular subtype or tumor grade. These cells with different frequencies are present in the TME of DCIS and IDC. The presence of regulatory cells including Tregs, MDSC, Th2, Th17, M2 macrophages, HLADR T cells, and Tγδ cells is related to more immunosuppressive microenvironment, especially in ER and TN subtypes. In contrast, NK cells, CTL, Th, and Tfh cells are associated to the anti-tumor activity. These cells are higher in ER+ BC, although in other subtypes such as TN or HER2+ are associated with a favorable prognosis.

Conclusion

Determining the specific immune response in each subtype could be helpful in estimating the possible behavior of the tumor cells in TME. It is important to realize that different frequencies of immune cells in BC environment likely determine the patients’ prognosis and their survival in each subtype. Therefore, elucidation of the distinct immune players in TME would be helpful toward developing targeted therapies in each subtype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BC:

Breast cancer

CTL:

Cytotoxic T lymphocyte

CTLA-4:

Cytotoxic T lymphocyte antigen 4

DCIS:

Ductal carcinoma in situ

DFS:

Disease-free survival

ELF5:

E74-like factor 5

EMT:

Epithelial–mesenchymal transition

ER:

Estrogen receptor

HER2:

Human epidermal growth factor receptor 2

iCTLA-4:

Intracellular CTLA-4

IDC:

Invasive ductal carcinoma

ILC:

Innate lymphoid cell

LAG-3:

Lymphocyte-activation gene-3

MDSC:

Myeloid-derived suppressor cell

NCT:

Neoadjuvant chemotherapy

NET:

Neutrophil extracellular trap

NK:

Natural killer cells

NLR:

Neutrophil to lymphocyte ratio

OS:

Overall survival

pCR:

Pathologic complete response

PD-1:

Programmed cell death protein-1

PD-L1:

Programmed death ligand-1

PLR:

Platelet to lymphocyte ratio

PR:

Progesterone receptor

TAM:

Tumor-associated macrophage

TAN:

Tumor-associated neutrophil

Tfh:

Follicular T helper cell

Th1:

Type 1 helper T cells

Th2:

Type 2 helper T-cell

TIL:

Tumor-infiltrating lymphocyte

TIM-3:

T-cell immunoglobulin and mucin domain

TLS:

Tertiary lymphoid structure

TME:

Tumor microenvironment

TN:

Triple-negative

TNBC:

Triple-negative breast cancer

Treg:

Regulatory T-cell

Tγδ:

Gamma delta T-cell

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics. CA Cancer J Clin 69:7–34

    PubMed  Google Scholar 

  2. Hoon Tan P, Ellis I, Allison K, Brogi E et al (2020) The 2019 WHO classification of tumours of the breast. Histopathology. https://doi.org/10.1111/his.14091

    Article  Google Scholar 

  3. Hanna WM, Parra-Herran C, Lu F-I, Slodkowska E, Rakovitch E, Nofech-Mozes S (2019) Ductal carcinoma in situ of the breast: an update for the pathologist in the era of individualized risk assessment and tailored therapies. Mod Pathol 32:896–915

    CAS  PubMed  Google Scholar 

  4. Lin EY, Gouon-Evans V, Nguyen AV, Pollard JW (2002) The macrophage growth factor CSF-1 in mammary gland development and tumor progression. J Mammary Gland Biol Neoplasia 7:147–162

    PubMed  Google Scholar 

  5. Colbert DC, McGarry MP, O'Neill K, Lee NA, Lee JJ (2005) Decreased size and survival of weanling mice in litters of IL-5–/–mice are a consequence of the IL-5 deficiency in nursing dams. Contemp Top Lab Anim Sci 44:53–55

    CAS  PubMed  Google Scholar 

  6. Plaks V, Boldajipour B, Linnemann JR, Nguyen NH, Kersten K (2015) Adaptive immune regulation of mammary postnatal organogenesis. Dev Cell 34:493–504

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Del Alcazar CRG, Huh SJ, Ekram MB, Trinh A, Liu LL (2017) Immune escape in breast cancer during in situ to invasive carcinoma transition. Cancer Discov 7:1098–1115

    Google Scholar 

  8. Tamimi RM, Baer HJ, Marotti J, Galan M, Galaburda L (2008) Comparison of molecular phenotypes of ductal carcinoma in situ and invasive breast cancer. Breast Cancer Res 10:R67

    PubMed  PubMed Central  Google Scholar 

  9. Allred DC, Clark GM, Molina R, Tandon AK, Schnitt SJ (1992) Overexpression of HER-2/neu and its relationship with other prognostic factors change during the progression of in situ to invasive breast cancer. Human Pathol 23:974–979

    CAS  Google Scholar 

  10. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502

    CAS  PubMed  Google Scholar 

  11. Thompson E, Taube JM, Elwood H, Sharma R, Meeker A (2016) The immune microenvironment of breast ductal carcinoma in situ. Modern Pathol 29:249

    CAS  Google Scholar 

  12. Vaziri Fard E, Ali Y, Wang XI, Saluja K, Covinsky MH, Wang L, Zhang S (2019) Tumor-infiltrating lymphocyte volume is a better predictor of disease-free survival than stromal tumor-infiltrating lymphocytes in invasive breast Carcinoma. Am J Clin Pathol 152(5):656–665

    PubMed  Google Scholar 

  13. Seo A, Lee H, Kim E, Kim H, Jang M, Lee H, Kim YJ, Kim JH, Park SY (2013) Tumour-infiltrating CD8+ lymphocytes as an independent predictive factor for pathological complete response to primary systemic therapy in breast cancer. Br J Cancer 109(10):2705–2713

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Stanton SE, Disis ML (2016) Clinical significance of tumor-infiltrating lymphocytes in breast cancer. J Immunother Cancer 4(1):59

    PubMed  PubMed Central  Google Scholar 

  15. Georgiannos SN, Renaut A, Goode AW, Sheaff M (2003) The immunophenotype and activation status of the lymphocytic infiltrate in human breast cancers, the role of the major histocompatibility complex in cell-mediated immune mechanisms, and their association with prognostic indicators. Surgery 134(5):827–834

    PubMed  Google Scholar 

  16. Vgenopoulou S, Lazaris AC, Markopoulos C, Boltetsou E, Kyriakou V, Kavantzas N, Patsouris E, Davaris PS (2003) Immunohistochemical evaluation of immune response in invasive ductal breast cancer of not-otherwise-specified type. The Breast 12(3):172–178

    PubMed  Google Scholar 

  17. Thike AA, Chen X, Koh VCY, Binte Md Nasir ND, Yeong JP, Bay BH, Tan PH (2020) Higher densities of tumour-infiltrating lymphocytes and CD4+ T cells predict recurrence and progression of ductal carcinoma in situ of the breast. Histopathology 76(6):852–864

    PubMed  Google Scholar 

  18. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, Banham AH (2006) Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol 24(34):5373–5380

    PubMed  Google Scholar 

  19. Kim M, Chung YR, Kim HJ, Woo JW, Ahn S, Park SY (2020) Immune microenvironment in ductal carcinoma in situ: a comparison with invasive carcinoma of the breast. Breast Cancer Res 22(1):1–12

    Google Scholar 

  20. Campbell MJ, Baehner F, O’Meara T, Ojukwu E, Han B (2017) Characterizing the immune microenvironment in high-risk ductal carcinoma in situ of the breast. Breast Cancer Res Treat 161:17–28

    CAS  PubMed  Google Scholar 

  21. Yi JS, Cox MA, Zajac AJ (2010) T-cell exhaustion: characteristics, causes and conversion. Immunology 129(4):474–481

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zuo T, Wang L, Morrison C, Chang X, Zhang H (2007) FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 129:1275–1286

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Khaja ASS, Toor SM, El Salhat H, Faour I, Haq NU, Ali BR, Elkord E (2017) Preferential accumulation of regulatory T cells with highly immunosuppressive characteristics in breast tumor microenvironment. Oncotarget 8(20):33159

    PubMed Central  Google Scholar 

  24. Lal A, Chan L, DeVries S, Chin K, Scott GK (2013) FOXP3-positive regulatory T lymphocytes and epithelial FOXP3 expression in synchronous normal, ductal carcinoma in situ, and invasive cancer of the breast. Breast Cancer Res Treat 139:381–390

    CAS  PubMed  Google Scholar 

  25. Gupta S, Joshi K, Wig J, Arora SK (2007) Intratumoral FOXP3 expression in infiltrating breast carcinoma: its association with clinicopathologic parameters and angiogenesis. Acta Oncol 46(6):792–797

    CAS  PubMed  Google Scholar 

  26. Takenaka M, Seki N, Toh U, Hattori S, Kawahara A, Yamaguchi T, Koura K, Takahashi R, Otsuka H, Takahashi H (2013) FOXP3 expression in tumor cells and tumor-infiltrating lymphocytes is associated with breast cancer prognosis. Mol Clin Oncol 1(4):625–632

    PubMed  PubMed Central  Google Scholar 

  27. Qian F, Qingping Y, Linquan W, Rongshou W, Shanshan R (2017) High tumor-infiltrating FoxP3+ T cells predict poor survival in estrogen receptor-positive breast cancer: a meta-analysis. Eur J Surg Oncol 43:1258–1264

    CAS  PubMed  Google Scholar 

  28. Fukui R, Fujimoto Y, Watanabe T, Inoue N et al (2020) Association between FOXP3/CD8 lymphocyte ratios and tumor infiltrating lymphocyte levels in different breast cancer subtypes. Anticancer Res 40:2141–2150

    CAS  PubMed  Google Scholar 

  29. Zhou Y, Shao N, Aierken N, Xie C, Ye R, Qian X, Hu Z, Zhang J, Lin Y (2017) Prognostic value of tumor-infiltrating Foxp3+ regulatory T cells in patients with breast cancer: a meta-analysis. J Cancer 8(19):4098

    PubMed  PubMed Central  Google Scholar 

  30. Lee S, Cho EY, Park YH, Ahn JS, Im Y-H (2013) Prognostic impact of FOXP3 expression in triple-negative breast cancer. Acta Oncol 52(1):73–81

    CAS  PubMed  Google Scholar 

  31. Semeraro M, Adam J, Stoll G, Louvet E, Chaba K, Poirier-Colame V, Sauvat A, Senovilla L, Vacchelli E, Bloy N (2016) The ratio of CD8+/FOXP3 T lymphocytes infiltrating breast tissues predicts the relapse of ductal carcinoma in situ. Oncoimmunology 5(10):e1218106

    PubMed  PubMed Central  Google Scholar 

  32. Peng G-L, Li L, Guo Y-W, Yu P, Yin X-J, Wang S, Liu C-P (2019) CD8+ cytotoxic and FoxP3+ regulatory T lymphocytes serve as prognostic factors in breast cancer. Ame J transl 11(8):5039

    CAS  Google Scholar 

  33. Liu S, Foulkes WD, Leung S, Gao D, Lau S (2014) Prognostic significance of FOXP3+ tumor-infiltrating lymphocytes in breast cancer depends on estrogen receptor and human epidermal growth factor receptor-2 expression status and concurrent cytotoxic T-cell infiltration. Breast Cancer Res 16:432

    PubMed  PubMed Central  Google Scholar 

  34. Yeong J, Thike AA, Lim JCT, Lee B, Li H (2017) Higher densities of Foxp3+ regulatory T cells are associated with better prognosis in triple-negative breast cancer. Breast Cancer Res Treat 163:21–35

    CAS  PubMed  Google Scholar 

  35. Liu F, Lang R, Zhao J, Zhang X, Pringle GA, Fan Y, Yin D, Gu F, Yao Z, Fu L (2011) CD8+ cytotoxic T cell and FOXP3+ regulatory T cell infiltration in relation to breast cancer survival and molecular subtypes. Breast Cancer Res Treat 130(2):645–655

    CAS  PubMed  Google Scholar 

  36. Saraiva DP, Jacinto A, Borralho P, Braga S, Cabral MG (2018) HLA-DR in cytotoxic T lymphocytes predicts breast cancer patients' response to neoadjuvant chemotherapy. Front immunol 9:2605

    PubMed  PubMed Central  Google Scholar 

  37. Holtmeier W, Kabelitz D (2005) γδ T cells link innate and adaptive immune responses. Chem Immunol Allergy 86:151–183

    CAS  PubMed  Google Scholar 

  38. Lee HW, Chung YS, Kim TJ (2020) Heterogeneity of human γδ T cells and their role in cancer immunity. Immune Netw 20(1):e5

    PubMed  PubMed Central  Google Scholar 

  39. Wu D, Wu P, Qiu F, Wei Q, Huang J (2017) Human γδT-cell subsets and their involvement in tumor immunity. Cell Mol Immunol 14(3):245–253

    CAS  PubMed  Google Scholar 

  40. Dhar S, Chiplunkar SV (2010) Lysis of aminobisphosphonate-sensitized MCF-7 breast tumor cells by Vγ9Vδ2 T cells. Cancer Immunol 10:10

    Google Scholar 

  41. Peng G, Wang HY, Peng W, Kiniwa Y, Seo KH, Wang RF (2007) Tumor-infiltrating γδ T cells suppress T and dendritic cell function via mechanisms controlled by a unique toll-like receptor signaling pathway. Immunity 27(2):334–348

    CAS  PubMed  Google Scholar 

  42. Ma C, Zhang Q, Ye J, Wang F, Zhang Y (2012) Tumor-infiltrating γδ T lymphocytes predict clinical outcome in human breast cancer. J Immunol 189:5029–5036

    CAS  PubMed  Google Scholar 

  43. Xiang Z, Tu W (2017) Dual face of Vγ9Vδ2-T cells in tumor immunology: anti-versus pro-tumoral activities. Front immunol 8:1041

    PubMed  PubMed Central  Google Scholar 

  44. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K (2015) IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522:345

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nature Med 21:938

    CAS  PubMed  Google Scholar 

  46. Gu-Trantien C, Willard-Gallo K (2013) Tumor-infiltrating follicular helper T cells: the new kids on the block. Oncoimmunology 2:e26066

    PubMed  PubMed Central  Google Scholar 

  47. Solinas C, Garaud S, De Silva P, Boisson A, Van den Eynden G (2017) Immune checkpoint molecules on tumor-infiltrating lymphocytes and their association with tertiary lymphoid structures in human breast cancer. Front Immunol 8:1412

    PubMed  PubMed Central  Google Scholar 

  48. Gu-Trantien C, Loi S, Garaud S, Equeter C, Libin M (2013) CD4+ follicular helper T cell infiltration predicts breast cancer survival. J Clin Invest 123:2873–2892

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Song IH, Heo S-H, Bang WS, Park HS, Park IA (2017) Predictive value of tertiary lymphoid structures assessed by high endothelial venule counts in the neoadjuvant setting of triple-negative breast cancer. Cancer Res Treat 49:399

    CAS  PubMed  Google Scholar 

  50. Gu-Trantien C, Migliori E, Buisseret L, de Wind A, Brohée S, Garaud S et al (2017) CXCL13-producing TFH cells link immune suppression and adaptive memory in human breast cancer. JCI insight 2(11):e91487

    PubMed Central  Google Scholar 

  51. Yang L, Qi Y, Hu J, Tang L, Zhao S, Shan B (2012) Expression of Th17 cells in breast cancer tissue and its association with clinical parameters. Cell Biochem Biophys 62:153–159

    CAS  PubMed  Google Scholar 

  52. Thibaudin M, Chaix M, Boidot R, Végran F, Derangère V (2016) Human ectonucleotidase-expressing CD25high Th17 cells accumulate in breast cancer tumors and exert immunosuppressive functions. Oncoimmunology 5:e1055444

    PubMed  Google Scholar 

  53. Chen WC, Lai YH, Chen HY, Guo HR, Su IJ, Chen HH (2013) Interleukin-17-producing cell infiltration in the breast cancer tumour microenvironment is a poor prognostic factor. Histopathology 63(2):225–233

    PubMed  Google Scholar 

  54. Faucheux L, Grandclaudon M, Perrot-Dockès M, Sirven P, Berger F, Hamy A, Fourchotte V, Vincent-Salomon A, Mechta-Grigoriou F, Reyal F (2019) A multivariate Th17 metagene for prognostic stratification in T cell non-inflamed triple negative breast cancer. OncoImmunology 8(9):e1624130

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lv Z, Liu M, Shen J, Xiang D, Ma Y, Ji Y (2018) Association of serum interleukin-10, interleukin-17A and transforming growth factor-α levels with human benign and malignant breast diseases. Ex Ther Med 15(6):5475–5480

    Google Scholar 

  56. Avalos-Navarro G, Muñoz-Valle JF, Daneri-Navarro A, Quintero-Ramos A et al (2019) Circulating soluble levels of MIF in women with breast cancer in the molecular subtypes: relationship with Th17 cytokine profile. Clin Exp Med 19(3):385–391

    CAS  PubMed  Google Scholar 

  57. Li Y, Wang Y, Shi Z, Liu J, Zheng S, Yang J et al (2019) clinicopathological and prognostic Role of STAT3/p-STAT3 in breast cancer patients in China: a meta-analysis. Sci Rep 9(1):1–9

    Google Scholar 

  58. Pensa S, Watson CJ, Poli V (2009) Stat3 and the inflammation/acute phase response in involution and breast cancer. J Mammary Gland Biol Neoplasia 14:121–129

    PubMed  Google Scholar 

  59. Sirkisoon SR, Carpenter RL, Rimkus T, Anderson A, Harrison A et al (2018) Interaction between STAT3 and GLI1/tGLI1 oncogenic transcription factors promotes the aggressiveness of triple-negative breast cancers and HER2-enriched breast cancer. Oncogene 37(19):2502–2514

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Aleskandarany MA, Agarwal D, Negm OH, Ball G, Elmouna A et al (2016) The prognostic significance of STAT3 in invasive breast cancer: analysis of protein and mRNA expressions in large cohorts. Breast Cancer Res Treat 156(1):9–20

    CAS  PubMed  Google Scholar 

  61. Oh TG, Wang S-CM, Acharya BR, Goode JM, Graham JD (2016) The nuclear receptor, RORγ, regulates pathways necessary for breast cancer metastasis. EbioMedicine 6:59–72

    PubMed  PubMed Central  Google Scholar 

  62. Muscat GE, Eriksson NA, Byth K, Loi S, Graham D (2013) Research resource: nuclear receptors as transcriptome: discriminant and prognostic value in breast cancer. Mol Endocrinol 27:350–365

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Benevides L, Cardoso CR, Tiezzi DG, Marana HR, Andrade JM, Silva JS (2013) Enrichment of regulatory T cells in invasive breast tumor correlates with the upregulation of IL-17A expression and invasiveness of the tumor. Eur J Immunol 43:1518–1528

    CAS  PubMed  Google Scholar 

  64. Sarvaria A, Madrigal JA, Saudemont A (2017) B cell regulation in cancer and anti-tumor immunity. Cell Mol Immunol 14(8):662–674

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mahmoud S, Lee A, Paish E, Macmillan R, Ellis I (2012) The prognostic significance of B lymphocytes in invasive carcinoma of the breast. Breast Cancer Res Treat 132:545–553

    CAS  PubMed  Google Scholar 

  66. Miligy I, Mohan P, Gaber A, Aleskandarany MA, Nolan CC (2017) Prognostic significance of tumour infiltrating B lymphocytes in breast ductal carcinoma in situ. Histopathology 71:258–268

    PubMed  Google Scholar 

  67. Shen M, Wang J, Ren X (2018) New insights into tumor-infiltrating B lymphocytes in breast cancer: clinical impacts and regulatory mechanisms. Front Immunol 9:470

    PubMed  PubMed Central  Google Scholar 

  68. Yeong J, Lim JCT, Lee B, Li H, Chia N, Ong CCH, Lye WK, Putti TC, Dent R, Lim E (2018) High densities of tumor-associated plasma cells predict improved prognosis in triple negative breast cancer. Front immunol 9:1209

    PubMed  PubMed Central  Google Scholar 

  69. Xu Y, Lan S, Zheng Q (2018) Prognostic significance of infiltrating immune cell subtypes in invasive ductal carcinoma of the breast. Tumori 104:196–201

    CAS  PubMed  Google Scholar 

  70. Helal TE, Ibrahim EA, Alloub AI (2013) Immunohistochemical analysis of tumor-infiltrating lymphocytes in breast carcinoma: relation to prognostic variables. Indian J Pathol Microbiol 56:89

    PubMed  Google Scholar 

  71. Garaud S, Buisseret L, Solinas C, Gu-Trantien C, de Wind A, Van den Eynden G, Naveaux C, Lodewyckx J-N, Boisson A, Duvillier H (2019) Tumor-infiltrating B cells signal functional humoral immune responses in breast cancer. JCI Insight. https://doi.org/10.1172/jci.insight.129641

    Article  PubMed  PubMed Central  Google Scholar 

  72. Löfdahl B, Ahlin C, Holmqvist M, Holmberg L, Zhou W (2012) Inflammatory cells in node-negative breast cancer. Acta Oncol 51:680–686

    PubMed  Google Scholar 

  73. Olkhanud PB, Damdinsuren B, Bodogai M, Gress RE, Sen R (2011) Tumor-evoked regulatory B cells promote breast cancer metastasis by converting resting CD4+ T cells to T-regulatory cells. Cancer Res 71:3505–3515

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Lindner S, Dahlke K, Sontheimer K, Hagn M, Kaltenmeier C, Barth TF, Beyer T, Reister F, Fabricius D, Lotfi R (2013) Interleukin 21–induced granzyme B–expressing B cells infiltrate tumors and regulate T cells. Cancer Res 73(8):2468–2479

    CAS  PubMed  Google Scholar 

  75. Mohammed ZM, Going J, Edwards J, Elsberger B, Doughty J, McMillan D (2012) The relationship between components of tumour inflammatory cell infiltrate and clinicopathological factors and survival in patients with primary operable invasive ductal breast cancer. Br J Cancer 107(5):864

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nature Immunol 11:889

    CAS  Google Scholar 

  77. Mohammed Z, Going J, Edwards J, Elsberger B, McMillan D (2013) The relationship between lymphocyte subsets and clinico-pathological determinants of survival in patients with primary operable invasive ductal breast cancer. Br J Cancer 109:1676

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Gunnarsdóttir FB, Hagerling C, Bergenfelz C, Mehmeti M et al (2020) Inflammatory macrophage derived TNFα downregulates estrogen receptor α via FOXO3a inactivation in human breast cancer cells. Exp Cell Res 4:111932

    Google Scholar 

  79. Sousa S, Brion R, Lintunen M, Kronqvist P, Sandholm J (2015) Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Res 17:101

    PubMed  PubMed Central  Google Scholar 

  80. Tiainen S, Tumelius R, Rilla K, Hämäläinen K, Tammi M (2015) High numbers of macrophages, especially M2-like (CD 163-positive), correlate with hyaluronan accumulation and poor outcome in breast cancer. Histopathology 66:873–883

    PubMed  Google Scholar 

  81. Zhang WJ, Wang XH, Gao ST, Chen C, Xu XY (2018) Tumor-associated macrophages correlate with phenomenon of epithelial-mesenchymal transition and contribute to poor prognosis in triple-negative breast cancer patients. J Surg Res 222:93–101

    CAS  PubMed  Google Scholar 

  82. Ramos RN, Rodriguez C, Hubert M, Ardin M et al (2010) CD163+ tumor-associated macrophage accumulation in breast cancer patients reflects both local differentiation signals and systemic skewing of monocytes. Clin Transl Immunol 9:e1108

    Google Scholar 

  83. Holness CL, Simmons DL (1993) Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood 81:1607–1613

    CAS  PubMed  Google Scholar 

  84. Miyasato Y, Shiota T, Ohnishi K, Pan C, Yano H (2017) High density of CD 204-positive macrophages predicts worse clinical prognosis in patients with breast cancer. Cancer Sci 108:1693–1700

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Lin L, Chen YS, Yao YD, Chen JQ, Chen JN (2015) CCL18 from tumor-associated macrophages promotes angiogenesis in breast cancer. Oncotarget 6:34758

    PubMed  PubMed Central  Google Scholar 

  86. Yuan ZY, Luo RZ, Peng RJ, Wang SS, Xue C (2014) High infiltration of tumor-associated macrophages in triple-negative breast cancer is associated with a higher risk of distant metastasis. OncoTargets Ther 7:1475

    Google Scholar 

  87. Gwak JM, Jang MH, Kim DI, Seo AN, Park SY (2015) Prognostic value of tumor-associated macrophages according to histologic locations and hormone receptor status in breast cancer. PLoS One 10:e0125728

    PubMed  PubMed Central  Google Scholar 

  88. Linde N, Casanova-Acebes M, Sosa MS, Mortha A, Rahman A, Farias E et al (2018) Macrophages orchestrate breast cancer early dissemination and metastasis. Nature Commun 9:21

    Google Scholar 

  89. Medrek C, Pontén F, Jirström K, Leandersson K (2012) The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients. BMC Cancer 12(1):306

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mahmoud S, Lee A, Paish E, Macmillan R, Ellis I, Green A (2012) Tumour-infiltrating macrophages and clinical outcome in breast cancer. J Clin Pathol 65(2):159–163

    CAS  PubMed  Google Scholar 

  91. Ch’ng ES, Sharif SET, Jaafar H (2013) In human invasive breast ductal carcinoma, tumor stromal macrophages and tumor nest macrophages have distinct relationships with clinicopathological parameters and tumor angiogenesis. Virchows Archiv 462(3):257–267

    PubMed  Google Scholar 

  92. Robinson BD, Sica GL, Liu Y-F, Rohan TE, Gertler FB, Condeelis JS, Jones JG (2009) Tumor microenvironment of metastasis in human breast carcinoma: a potential prognostic marker linked to hematogenous dissemination. Clin Cancer Res 15(7):2433–2441

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wyckoff JB, Wang Y, Lin EY, Li J-f, Goswami S, Stanley ER, Segall JE, Pollard JW, Condeelis J (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67(6):2649–2656

    CAS  PubMed  Google Scholar 

  94. Leek RD, Talks KL, Pezzella F, Turley H, Campo L, Brown NS, Bicknell R, Taylor M, Gatter KC, Harris AL (2002) Relation of hypoxia-inducible factor-2α (HIF-2α) expression in tumor-infiltrative macrophages to tumor angiogenesis and the oxidative thymidine phosphorylase pathway in human breast cancer. Cancer Res 62(5):1326–1329

    CAS  PubMed  Google Scholar 

  95. Leek RD, Lewis CE, Whitehouse R, Greenall M, Clarke J, Harris AL (1996) Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Res 56(20):4625–4629

    CAS  PubMed  Google Scholar 

  96. Zeindler J, Angehrn F, Droeser R et al (2019) Infiltration by myeloperoxidase-positive neutrophils is an independent prognostic factor in breast cancer. Breast Cancer Res Treat 177:581–589

    CAS  PubMed  Google Scholar 

  97. Queen MM, Ryan RE, Holzer RG, Keller-Peck CR, Jorcyk CL (2005) Breast cancer cells stimulate neutrophils to produce oncostatin M: potential implications for tumor progression. Cancer Res 65(19):8896–8904

    CAS  PubMed  Google Scholar 

  98. Spiegel A, Brooks MW, Houshyar S, Reinhardt F, Ardolino M et al (2016) Neutrophils suppress intraluminal NK cell–mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cells. Cancer Discov 6(6):630–649

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Demers M, Wong SL, Martinod K, Gallant M, Cabral JE (2016) Priming of neutrophils toward NETosis promotes tumor growth. Oncoimmunology 5:e1134073

    PubMed  PubMed Central  Google Scholar 

  100. Mouchemore KA, Anderson RL, Hamilton JA (2018) Neutrophils, G-CSF and their contribution to breast cancer metastasis. FEBS J 285:665–679

    CAS  PubMed  Google Scholar 

  101. Verma C, Kaewkangsadan V, Eremin JM, Cowley GP, Ilyas M (2015) Natural killer (NK) cell profiles in blood and tumour in women with large and locally advanced breast cancer (LLABC) and their contribution to a pathological complete response (PCR) in the tumour following neoadjuvant chemotherapy (NAC): differential restoration of blood profiles by NAC and surgery. J Transl Med 13:180

    PubMed  PubMed Central  Google Scholar 

  102. Liu Z, Li M, Jiang Z, Wang X (2018) A comprehensive immunologic portrait of triple-negative breast cancer. Transl Oncol 11(2):311–329

    PubMed  PubMed Central  Google Scholar 

  103. Mamessier E, Sylvain A, Thibult M-L, Houvenaeghel G, Jacquemier J et al (2011) Human breast cancer cells enhance self tolerance by promoting evasion from NK cell antitumor immunity. J Clin Invest 121(9):3609–3622

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Carrega P, Bonaccorsi I, Di Carlo E, Morandi B, Paul P (2014) CD56 bright perforin low noncytotoxic human NK cells are abundant in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs via afferent lymph. J Immunol 192:3805–3815

    CAS  PubMed  Google Scholar 

  105. Rathore AS, Goel MM, Makker A, Kumar S, Srivastava AN (2014) Is the tumor infiltrating natural killer cell (NK-TILs) count in infiltrating ductal carcinoma of breast prognostically significant. Asian Pac J Cancer Prev 15:3757–3761

    PubMed  Google Scholar 

  106. Aspord C, Pedroza-Gonzalez A, Gallegos M, Tindle S, Burton EC (2007) Breast cancer instructs dendritic cells to prime interleukin 13–secreting CD4+ T cells that facilitate tumor development. J Exp Med 204:1037–1047

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Iwamoto M, Shinohara H, Miyamoto A, Okuzawa M, Mabuchi H (2003) Prognostic value of tumor-infiltrating dendritic cells expressing CD83 in human breast carcinomas. Int J Cancer 104:92–97

    CAS  PubMed  Google Scholar 

  108. Gabrilovich DI, Chen HL, Girgis KR, Cunningham HT, Meny GM (1996) Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Med 2:1096

    CAS  PubMed  Google Scholar 

  109. Markowitz J, Wesolowski R, Papenfuss T, Brooks TR, Carson WE (2013) Myeloid-derived suppressor cells in breast cancer. Breast Cancer Res Treat 140:13–21

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Gabrilovich DI, Ostrand-Rosenberg S, Bronte V (2012) Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 12:253

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hix LM, Karavitis J, Khan MW, Shi YH, Khazaie K, Zhang M (2013) Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid-derived suppressor cells. J Biol Chem 288(17):11676–11688

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ali HR, Chlon L, Pharoah PD, Markowetz F, Caldas C (2016) Patterns of immune infiltration in breast cancer and their clinical implications: a gene-expression-based retrospective study. PLoS Med 13:e1002194

    PubMed  PubMed Central  Google Scholar 

  113. Gallego-Ortega D, Ledger A, Roden DL, Law AM, Magenau A (2015) ELF5 drives lung metastasis in luminal breast cancer through recruitment of Gr1+ CD11b+ myeloid-derived suppressor cells. PLoS Biol 13:e1002330

    PubMed  PubMed Central  Google Scholar 

  114. Kalyuga M, Gallego-Ortega D, Lee HJ, Roden DL, Cowley MJ (2012) ELF5 suppresses estrogen sensitivity and underpins the acquisition of antiestrogen resistance in luminal breast cancer. PLoS Biol 10:e1001461

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kumar S, Wilkes DW, Samuel N, Blanco MA, Nayak A (2018) ΔNp63-driven recruitment of myeloid-derived suppressor cells promotes metastasis in triple-negative breast cancer. J Clin Invest 128:5095–5109

    PubMed  PubMed Central  Google Scholar 

  116. Zhu H, Gu Y, Xue Y, Yuan M, Cao X, Liu Q (2017) CXCR2+ MDSCs promote breast cancer progression by inducing EMT and activated T cell exhaustion. Oncotarget 8:114554

    PubMed  PubMed Central  Google Scholar 

  117. Sonnenberg GF, Artis D (2015) Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nature Med 21:698

    CAS  PubMed  Google Scholar 

  118. Cortez VS, Robinette ML, Colonna M (2015) Innate lymphoid cells: new insights into function and development. Curr Opin Immunol 32:71–77

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Salimi M, Wang R, Yao X, Li X, Wang X (2018) Activated innate lymphoid cell populations accumulate in human tumour tissues. BMC Cancer 18:341

    PubMed  PubMed Central  Google Scholar 

  120. Tian Z, van Velkinburgh JC, Wu Y, Ni B (2016) Innate lymphoid cells involve in tumorigenesis. Int J Cancer 138:22–29

    CAS  PubMed  Google Scholar 

  121. Jovanovic IP, Pejnovic NN, Radosavljevic GD, Pantic JM, Milovanovic MZ (2014) Interleukin-33/ST2 axis promotes breast cancer growth and metastases by facilitating intratumoral accumulation of immunosuppressive and innate lymphoid cells. Int J Cancer 134:1669–1682

    CAS  PubMed  Google Scholar 

  122. Fujisawa T, Joshi B, Nakajima A, Puri RK (2009) A novel role of interleukin-13 receptor α2 in pancreatic cancer invasion and metastasis. Cancer Res 69:8678–8685

    CAS  PubMed  Google Scholar 

  123. Irshad S, Flores-Borja F, Lawler K, Monypenny J, Evans R (2017) RORγt+ innate lymphoid cells promote lymph node metastasis of breast cancers. Cancer Res 77:1083–1096

    CAS  PubMed  Google Scholar 

  124. Irshad S, Lawler K, Flores-Borja F, Monypenny J, Evans R (2014) Effect of lymphoid tissue inducer cells on lymphatic tumor cell invasion via activation of the RANKL/RANK axis within triple-negative breast cancers. J Clin Oncol 32:11082

    Google Scholar 

  125. Wang Y, Dong T, Xuan Q, Zhao H, Qin L, Zhang Q (2018) Lymphocyte-activation gene-3 expression and prognostic value in neoadjuvant-treated triple-negative breast cancer. J Breast Cancer 21:124–133

    PubMed  PubMed Central  Google Scholar 

  126. Gonzalez-Ericsson PI, Stovgaard ES, Sua LF et al (2020) The path to a better biomarker: application of a risk management framework for the implementation of PD-L1 and TILs as immuno-oncology biomarkers in breast cancer clinical trials and daily practice. J Pathol 250(5):667–684

    CAS  PubMed  Google Scholar 

  127. Tang F, Zheng P (2018) Tumor cells versus host immune cells: whose PD-L1 contributes to PD-1/PD-L1 blockade mediated cancer immunotherapy? Cell Biosci 8:34

    PubMed  PubMed Central  Google Scholar 

  128. Huang W, Ran R, Shao B et al (2019) Prognostic and clinicopathological value of PD-L1 expression in primary breast cancer: a meta-analysis. Breast Cancer Res Treat 178:17–33

    CAS  PubMed  Google Scholar 

  129. Muenst S, Schaerli A, Gao F, Däster S, Trella E (2014) Expression of programmed death ligand 1 (PD-L1) is associated with poor prognosis in human breast cancer. Breast Cancer Res Treat 146:15–24

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhou T, Xu D, Tang B, Ren Y, Han Y (2018) Expression of programmed death ligand-1 and programmed death-1 in samples of invasive ductal carcinoma of the breast and its correlation with prognosis. Anticancer Drugs 29:904

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Song Q, Shi F, Adair M, Chang H, Guan X (2019) Cell counts, rather than proportion, of CD8/PD-1 tumor-infiltrating lymphocytes in a tumor microenvironment associated with pathological characteristics of Chinese invasive ductal breast cancer. J Immunol Res 2019:8505021

    PubMed  PubMed Central  Google Scholar 

  132. Kassardjian A, Shintaku PI, Moatamed NA (2018) Expression of immune checkpoint regulators, cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death-ligand 1 (PD-L1), in female breast carcinomas. PLoS One 13:e0195958

    PubMed  PubMed Central  Google Scholar 

  133. Yu H, Yang J, Jiao S, Li Y, Zhang W, Wang J (2015) Cytotoxic T lymphocyte antigen 4 expression in human breast cancer: implications for prognosis. Cancer Immunol Immunother 64:853–860

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Lan G, Li J, Wen Q, Lin L, Chen L (2018) Cytotoxic T lymphocyte associated antigen 4 expression predicts poor prognosis in luminal B HER2-negative breast cancer. Oncology Lett 15:5093–5097

    Google Scholar 

  135. Stanton SE, Adams S, Disis ML (2016) Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol 2:1354–1360

    PubMed  Google Scholar 

  136. Triebel F, Hacene K, Pichon M-F (2006) A soluble lymphocyte activation gene-3 (sLAG-3) protein as a prognostic factor in human breast cancer expressing estrogen or progesterone receptors. Cancer Lett 235:147–153

    CAS  PubMed  Google Scholar 

  137. Burugu S, Gao D, Leung S, Chia S, Nielsen T (2017) LAG-3+ tumor infiltrating lymphocytes in breast cancer: clinical correlates and association with PD-1/PD-L1+ tumors. Ann Oncol 28:2977–2984

    CAS  PubMed  Google Scholar 

  138. Anderson AC, Joller N, Kuchroo VK (2016) Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity 44:989–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Baumeister SH, Freeman GJ, Dranoff G, Sharpe AH (2016) Coinhibitory pathways in immunotherapy for cancer. Ann Rev Immunol 34:539–573

    CAS  Google Scholar 

  140. Du H, Yi Z, Wang L, Li Z et al (2020) The co-expression characteristics of LAG3 and PD-1 on the T cells of patients with breast cancer reveal a new therapeutic strategy. Int Immunopharmacol 78:106113

    CAS  PubMed  Google Scholar 

  141. Bottai G, Raschioni C, Losurdo A, Di Tommaso L, Tinterri C (2016) An immune stratification reveals a subset of PD-1/LAG-3 double-positive triple-negative breast cancers. Breast Cancer Res 18:121

    PubMed  PubMed Central  Google Scholar 

  142. Burugu S, Gao D, Leung S, Chia SK, Nielsen TO (2018) TIM-3 expression in breast cancer. Oncoimmunology 7:e1502128

    PubMed  PubMed Central  Google Scholar 

  143. Zhang H, Xiang R, Wu B, Li J, Luo G (2017) T-cell immunoglobulin mucin-3 expression in invasive ductal breast carcinoma: clinicopathological correlations and association with tumor infiltration by cytotoxic lymphocytes. Mol Clin Oncol 7:557–563

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Byun KD, Hwang HJ, Park KJ, Kim MC, Cho SH (2018) T-Cell Immunoglobulin mucin 3 expression on tumor infiltrating lymphocytes as a positive prognosticator in triple-negative breast cancer. J Breast Cancer 21:406–414

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Effective, instructive and valuable comments, provided by the respected reviewers and editor are gratefully acknowledged.

Funding

This study was supported by a grant from Tehran University of Medical Sciences (Grant Number 41086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei.

Ethics declarations

Conflicts of interest

MS declares that she has no conflict of interest. HM declares that he has no conflict of interest. NR has received research grant from Tehran University of Medical Sciences (Grant Number 41086).

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghalvad, M., Mohammadi-Motlagh, HR. & Rezaei, N. Immune microenvironment in different molecular subtypes of ductal breast carcinoma. Breast Cancer Res Treat 185, 261–279 (2021). https://doi.org/10.1007/s10549-020-05954-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05954-2

Keywords

Navigation