Skip to main content
Log in

A multiscale fluidic device for the study of dendrite-mediated cell to cell communication

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Many cell types communicate by means of dendritic extensions via a multi-tiered set of geometric and chemical cues. Until recently, mimicking the compartmentalized in vivo cellular environment of dendrite-expressing cells such as osteocytes and motor neurons in a spatially and temporally controllable manner was limited by the challenges of in vitro device fabrication at submicron scales. Utilizing the improved resolution of current fabrication technology, we have designed a multiscale device, the Macro-micro-nano system, or Mμn, composed of two distinct cell-seeding and interrogation compartments separated by a nanochannel array. The array enables dendrite ingrowth, while providing a mechanism for fluidic sequestration and/or temporally-mediated diffusible signaling between cell populations. Modeling of the Mμn system predicted the ability to isolate diffusible signals, namely ATP. Empirical diffusion studies verified computational modeling. In addition, cell viability, dendrite interaction with the nanoarray, and cellular purinergic response to heat shock were experimentally evaluated within the device for both osteocytes and motor neurons. Our results describe a novel in vitro system in which dendrite-expressing cell types can be studied within nano-environments that mimic in vivo conditions. In particular, the Mμn system enables real-time observation of cell to cell communication between cell populations in distinct, but fluidically coupled regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • E. Aarden, A.-M. Wassenaar, M.J. Alblas, P.J. Nijweide, Immunocytochemical demonstration of extracellular matrix proteins in isolated osteocytes. Histochem. Cell Biol. 106, 495–501 (1996)

    Article  Google Scholar 

  • H. Aldskogius, E.N. Kozlova, Central neuron–glial and glial–glial interactions following axon injury. Prog. Neurobiol. 55, 1–26 (1998)

    Article  Google Scholar 

  • N.J. Allen, B.A. Barres, Neuroscience: Glia—More than just brain glue. Nature 457, 675–677 (2009)

    Article  Google Scholar 

  • J. Banchereau, R.M. Steinman, Dendritic cells and the control of immunity. Nature 392, 245–252 (1998)

    Article  Google Scholar 

  • S. Burra, D.P. Nicolella, W.L. Francis, C.J. Freitas, N.J. Mueschke, K. Poole, J.X. Jiang, Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proc. Natl. Acad. Sci. 107, 13648–13653 (2010)

    Article  Google Scholar 

  • C.T. Culbertson, S.C. Jacobson, J. Michael Ramsey, Diffusion coefficient measurements in microfluidic devices. Talanta 56, 365–373 (2002)

    Article  Google Scholar 

  • R.D. Fields, G. Burnstock, Purinergic signalling in neuron–glia interactions. Nat. Rev. Neurosci. 7, 423–436 (2006)

    Article  Google Scholar 

  • D.C. Genetos, C.J. Kephart, Y. Zhang, C.E. Yellowley, H.J. Donahue, Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J. Cell. Physiol. 212, 207–214 (2007)

    Article  Google Scholar 

  • A. Hoebertz, S. Mahendran, G. Burnstock, T.R. Arnett, ATP and UTP at low concentrations strongly inhibit bone formation by osteoblasts: A novel role for the P2Y2 receptor in bone remodeling. J. Cell. Biochem. 86, 413–419 (2002)

    Article  Google Scholar 

  • T. Kalwarczyk, M. Tabaka, R. Holyst, Biologistics—diffusion coefficients for complete proteome of Escherichia Coli. Bioinformatics 28, 2971–2978 (2012)

    Article  Google Scholar 

  • Y. Kato, J.J. Windle, B.A. Koop, G.R. Mundy, L.F. Bonewald, Establishment of an osteocyte-like cell line, MLO-Y4. J. Bone Miner. Res. 12, 2014–2023 (1997)

    Article  Google Scholar 

  • T.M. Kringelbach, D. Aslan, I. Novak, P. Schwarz, N.R. Jørgensen, UTP-induced ATP release is a fine-tuned signalling pathway in osteocytes. Purinergic Signal 10, 337–347 (2014)

    Article  Google Scholar 

  • D.A. Lauffenburger, A.F. Horwitz, Cell migration: A physically integrated molecular process. Cell 84, 359–369 (1996)

    Article  Google Scholar 

  • M.D. Levenson, N. Viswanathan, R.A. Simpson, Improving resolution in photolithography with a phase-shifting mask. Electron Devices, IEEE Transactions on 29, 1828–1836 (1982)

    Article  Google Scholar 

  • K. Lingenhöhl, D.M. Finch, Morphological characterization of rat entorhinal neurons in vivo: Soma-dendritic structure and axonal domains. Exp. Brain Res. 84, 57–74 (1991)

    Article  Google Scholar 

  • X.L. Lu, B. Huo, M. Park, X.E. Guo, Calcium response in osteocytic networks under steady and oscillatory fluid flow. Bone 51, 466–473 (2012)

    Article  Google Scholar 

  • M.G. Lykissas, A.K. Batistatou, K.A. Charalabopoulos, A.E. Beris, The role of neurotrophins in axonal growth, guidance, and regeneration. Curr. Neurovasc. Res. 4, 143–151 (2007)

    Article  Google Scholar 

  • R. Malik, D. Burch, M. Bazant, G. Ceder, Particle size dependence of the ionic diffusivity. Nano Lett. 10, 4123–4127 (2010)

    Article  Google Scholar 

  • McCutcheon, S., Unachukwu, U., Thakur, A., Majeska, R., Redenti, S., and Vazquez, M. (2016). In vitro formation of Neuroclusters in microfluidic devices and cell migration as a function of stromal-derived growth factor 1 gradients. Cell adhesion & migration, 0

  • Nidadavolu, S.S. (2013). Analysis and comparison of parallel plate flow chambers to determine consistency of fluid forces on cells

  • A.F. Oberhauser, C. Badilla-Fernandez, M. Carrion-Vazquez, J.M. Fernandez, The mechanical hierarchies of fibronectin observed with single-molecule AFM. J. Mol. Biol. 319, 433–447 (2002)

    Article  Google Scholar 

  • S. Orrenius, B. Zhivotovsky, P. Nicotera, Regulation of cell death: The calcium-apoptosis link. Nat. Rev. Mol. Cell Biol. 4, 552–565 (2003)

    Article  Google Scholar 

  • I.R. Orriss, G. Burnstock, T.R. Arnett, Purinergic signalling and bone remodelling. Curr. Opin. Pharmacol. 10, 322–330 (2010)

    Article  Google Scholar 

  • L.I. Plotkin, S.C. Manolagas, T. Bellido, Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival evidence for inside-out signaling leading to anoikis. J. Biol. Chem. 282, 24120–24130 (2007)

    Article  Google Scholar 

  • J.C.L. Plumier, D.A. Hopkins, H.A. Robertson, R.W. Currie, Constitutive expression of the 27-kDa heat shock protein (Hsp27) in sensory and motor neurons of the rat nervous system. J. Comp. Neurol. 384, 409–428 (1997)

    Article  Google Scholar 

  • J.T. Podichetty, D.V. Dhane, S.V. Madihally, Dynamics of diffusivity and pressure drop in flow-through and parallel-flow bioreactors during tissue regeneration. Biotechnol. Prog. 28, 1045–1054 (2012)

    Article  Google Scholar 

  • D. Rochon, I. Rousse, R. Robitaille, Synapse–glia interactions at the mammalian neuromuscular junction. J. Neurosci. 21, 3819–3829 (2001)

    Google Scholar 

  • M. Romanello, B. Pani, M. Bicego, P. D'Andrea, Mechanically induced ATP release from human osteoblastic cells. Biochem. Biophys. Res. Commun. 289, 1275–1281 (2001)

    Article  Google Scholar 

  • Schaap, A., and Bellouard, Y. (2013). Fabrication of topologically-complex 3D microstructures by femtosecond laser machining and polymer molding. Paper presented at: CLEO: Applications and Technology (Optical Society of America)

  • M.B. Schaffler, W.-Y. Cheung, R. Majeska, O. Kennedy, Osteocytes: Master orchestrators of bone. Calcif. Tissue Int. 94, 5–24 (2014)

    Article  Google Scholar 

  • K.A. Schalper, H.A. Sánchez, S.C. Lee, G.A. Altenberg, M.H. Nathanson, J.C. Sáez, Connexin 43 hemichannels mediate the Ca2+ influx induced by extracellular alkalinization. Am. J. Phys. Cell Phys. 299, C1504–C1515 (2010)

    Article  Google Scholar 

  • Shao, P.G., van Kan, J.A., and Watt, F. (2010). Sub Micron Poly-Dimethyl Siloxane (PDMS) Replication Using Proton Beam Fabricated Nickel Moulds. Paper presented at: Key Engineering Materials (Trans Tech Publ)

  • E. Takai, R.L. Mauck, C.T. Hung, X.E. Guo, Osteocyte viability and regulation of osteoblast function in a 3D trabecular bone explant under dynamic hydrostatic pressure. J. Bone Miner. Res. 19, 1403–1410 (2004)

    Article  Google Scholar 

  • S.D. Tan, T.J. de Vries, A.M. Kuijpers-Jagtman, C.M. Semeins, V. Everts, J. Klein-Nulend, Osteocytes subjected to fluid flow inhibit osteoclast formation and bone resorption. Bone 41, 745–751 (2007)

    Article  Google Scholar 

  • K. Tanaka-Kamioka, H. Kamioka, H. Ris, S.S. Lim, Osteocyte shape is dependent on actin filaments and osteocyte processes are unique actin-rich projections. J. Bone Miner. Res. 13, 1555–1568 (1998)

    Article  Google Scholar 

  • D.T. Theodosis, D.A. Poulain, S.H.R. Oliet, Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol. Rev. 88, 983–1008 (2008)

    Article  Google Scholar 

  • M.M. Thi, S. Islam, S.O. Suadicani, D.C. Spray, Connexin43 and pannexin1 channels in osteoblasts: Who is the "hemichannel"? J. Membr. Biol. 245, 401–409 (2012)

    Article  Google Scholar 

  • M.M. Thi, S.O. Suadicani, M.B. Schaffler, S. Weinbaum, D.C. Spray, Mechanosensory responses of osteocytes to physiological forces occur along processes and not cell body and require α(V)β(3) integrin. Proc. Natl. Acad. Sci. U. S. A. 110, 21012–21017 (2013)

    Article  Google Scholar 

  • K.J. Tomaselli, C.H. Damsky, L.F. Reichardt, Interactions of a neuronal cell line (PC12) with laminin, collagen IV, and fibronectin: Identification of integrin-related glycoproteins involved in attachment and process outgrowth. J. Cell Biol. 105, 2347–2358 (1987)

    Article  Google Scholar 

  • M.G. Vander Heiden, L.C. Cantley, C.B. Thompson, Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009)

    Article  Google Scholar 

  • C. Wei, B. Fan, D. Chen, C. Liu, Y. Wei, B. Huo, L. You, J. Wang, J. Chen, Osteocyte culture in microfluidic devices. Biomicrofluidics 9, 014109 (2015)

    Article  Google Scholar 

  • S. Weinbaum, S.C. Cowin, Y. Zeng, A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27, 339–360 (1994)

    Article  Google Scholar 

  • H. Xu, S. Gu, M.A. Riquelme, S. Burra, D. Callaway, H. Cheng, T. Guda, J. Schmitz, R.J. Fajardo, S.L. Werner, et al., Connexin 43 channels are essential for normal bone structure and osteocyte viability. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 30, 436–448 (2015)

    Article  Google Scholar 

  • L.D. You, S. Weinbaum, S.C. Cowin, M.B. Schaffler, Ultrastructure of the osteocyte process and its pericellular matrix. Anat. Rec. A: Discov. Mol. Cell. Evol. Biol. 278, 505–513 (2004)

    Article  Google Scholar 

  • L. You, S. Temiyasathit, E. Tao, F. Prinz, C.R. Jacobs, 3D microfluidic approach to mechanical stimulation of osteocyte processes. Cell. Mol. Bioeng. 1, 103–107 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Tanya Singh, The City College of New York

National Institutes of Health Grant #5R01AR041210-23

National Science Foundation Grant #CBET0939511

National Institutes of Health Grant #R21EY026752

CUNY Advanced Science Research Center

Wallace H. Coulter Foundation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maribel Vazquez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCutcheon, S., Majeska, R., Schaffler, M. et al. A multiscale fluidic device for the study of dendrite-mediated cell to cell communication. Biomed Microdevices 19, 71 (2017). https://doi.org/10.1007/s10544-017-0212-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-017-0212-1

Keywords

Navigation