Skip to main content

Advertisement

Log in

Connexin43 and Pannexin1 Channels in Osteoblasts: Who Is the “Hemichannel”?

  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Abstract

Osteoblasts sense and respond to mechanical stimuli in a process involving influx and release of large ions and signaling molecules. Unapposed gap junction hemichannels formed of connexin43 (Cx43) have been proposed as a major route for such exchange, in particular for release of ATP and prostaglandin E2 (PGE2) in osteocytes. However, we have found that Cx43-null osteoblasts have unaltered, mechanically induced PGE2 release and ATP-induced YoPro dye uptake. In contrast, PGE2 release in response to fluid shear stress is abolished in P2X7 receptor (P2X7R)–null osteoblasts, and ATP-induced dye uptake is attenuated following treatment of wild-type cells with a P2X7R or Pannexin1 (Panx1) channel blocker. These data indicate that Panx1 channels, in concert with P2X7R, likely form a molecular complex that performs the hemichannel function in osteoblast mechanosignaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson CM, Bergher JP, Swanson RA (2004) ATP-induced ATP release from astrocytes. J Neurochem 88:246–256

    Article  PubMed  CAS  Google Scholar 

  • Bao L, Locovei S, Dahl G (2004) Pannexin membrane channels are mechanosensitive conduits for ATP. FEBS Lett 572:65–68

    Article  PubMed  CAS  Google Scholar 

  • Batra N, Burra S, Siller-Jackson AJ, Gu S, Xia X, Weber GF, Desimone D, Bonewald LF, Lafer EM, Sprague E, Schwartz MA, Jiang JX (2012a) Mechanical stress–activated integrin alpha5beta1 induces opening of connexin 43 hemichannels. Proc Natl Acad Sci USA 109:3359–3364

    Article  PubMed  CAS  Google Scholar 

  • Batra N, Kar R, Jiang JX (2012b) Gap junctions and hemichannels in signal transmission, function and development of bone. Biochim Biophys Acta 1818:1909–1918

    Article  PubMed  CAS  Google Scholar 

  • Beyer EC, Steinberg TH (1991) Evidence that the gap junction protein connexin-43 is the ATP-induced pore of mouse macrophages. J Biol Chem 266:7971–7974

    PubMed  CAS  Google Scholar 

  • Blatz AL, Magleby KL (1983) Single voltage-dependent chloride-selective channels of large conductance in cultured rat muscle. Biophys J 43:237–241

    Article  PubMed  CAS  Google Scholar 

  • Bruzzone R, Barbe MT, Jakob NJ, Monyer H (2005) Pharmacological properties of homomeric and heteromeric pannexin hemichannels expressed in Xenopus oocytes. J Neurochem 92:1033–1043

    Article  PubMed  CAS  Google Scholar 

  • Burra S, Nicolella DP, Francis WL, Freitas CJ, Mueschke NJ, Poole K, Jiang JX (2010) Dendritic processes of osteocytes are mechanotransducers that induce the opening of hemichannels. Proc Natl Acad Sci USA 107:13648–13653

    Article  PubMed  CAS  Google Scholar 

  • Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 16:3100–3106

    Article  PubMed  CAS  Google Scholar 

  • Civitelli R (2008) Cell–cell communication in the osteoblast/osteocyte lineage. Arch Biochem Biophys 473:188–192

    Article  PubMed  CAS  Google Scholar 

  • Contreras JE, Saez JC, Bukauskas FF, Bennett MV (2003) Gating and regulation of connexin 43 (Cx43) hemichannels. Proc Natl Acad Sci USA 100:11388–11393

    Article  PubMed  CAS  Google Scholar 

  • Cruikshank SJ, Hopperstad M, Younger M, Connors BW, Spray DC, Srinivas M (2004) Potent block of Cx36 and Cx50 gap junction channels by mefloquine. Proc Natl Acad Sci USA 101:12364–12369

    Article  PubMed  CAS  Google Scholar 

  • Dahl G, Locovei S (2006) Pannexin: to gap or not to gap, is that a question? IUBMB Life 58:409–419

    Article  PubMed  CAS  Google Scholar 

  • Dermietzel R, Meier C, Bukauskas F, Spray DC (2003) Following tracks of hemichannels. Cell Commun Adhes 10:335–340

    PubMed  CAS  Google Scholar 

  • Di Virgilio F, Ferrari D, Falzoni S, Chiozzi P, Munerati M, Steinberg TH, Baricordi OR (1996) P2 purinoceptors in the immune system. Ciba Found Symp 198:290–305

    PubMed  Google Scholar 

  • Donahue HJ (2000) Gap junctions and biophysical regulation of bone cell differentiation. Bone 26:417–422

    Article  PubMed  CAS  Google Scholar 

  • Flagg-Newton J, Simpson I, Loewenstein WR (1979) Permeability of the cell-to-cell membrane channels in mammalian cell junction. Science 205:404–407

    Article  PubMed  CAS  Google Scholar 

  • Gallagher JA (2004) ATP P2 receptors and regulation of bone effector cells. J Musculoskelet Neuronal Interact 4:125–127

    PubMed  CAS  Google Scholar 

  • Genetos DC, Geist DJ, Liu D, Donahue HJ, Duncan RL (2005) Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3-E1 osteoblasts. J Bone Miner Res 20:41–49

    Article  PubMed  CAS  Google Scholar 

  • Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ (2007) Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol 212:207–214

    Article  PubMed  CAS  Google Scholar 

  • Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294

    Article  PubMed  CAS  Google Scholar 

  • Hofer A, Dermietzel R (1998) Visualization and functional blocking of gap junction hemichannels (connexons) with antibodies against external loop domains in astrocytes. Glia 24:141–154

    Article  PubMed  CAS  Google Scholar 

  • Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E (2008) P2X7 receptor-pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 295:C752–C760

    Article  PubMed  CAS  Google Scholar 

  • Iglesias R, Dahl G, Qiu F, Spray DC, Scemes E (2009a) Pannexin 1: the molecular substrate of astrocyte “hemichannels.”. J Neurosci 29:7092–7097

    Article  PubMed  CAS  Google Scholar 

  • Iglesias R, Spray DC, Scemes E (2009b) Mefloquine blockade of pannexin1 currents: resolution of a conflict. Cell Commun Adhes 16:131–137

    Article  PubMed  CAS  Google Scholar 

  • Jiang JX, Cherian PP (2003) Hemichannels formed by connexin 43 play an important role in the release of prostaglandin E2 by osteocytes in response to mechanical strain. Cell Commun Adhes 10:259–264

    PubMed  CAS  Google Scholar 

  • Johnson RG, Sheridan JD (1971) Junctions between cancer cells in culture: ultrastructure and permeability. Science 174:717–719

    Article  PubMed  CAS  Google Scholar 

  • Johnson RG, Herman WS, Preus DM (1973) Homocellular and heterocellular gap junctions in Limulus: a thin-section and freeze-fracture study. J Ultrastruct Res 43:298–312

    Article  PubMed  CAS  Google Scholar 

  • Kar R, Batra N, Riquelme MA, Jiang JX (2012) Biological role of connexin intercellular channels and hemichannels. Arch Biochem Biophys 524:2–15

    Article  PubMed  CAS  Google Scholar 

  • Ke HZ, Qi H, Weidema AF, Zhang Q, Panupinthu N, Crawford DT, Grasser WA, Paralkar VM, Li M, Audoly LP, Gabel CA, Jee WSS, Dixon SJ, Sims SM, Thompson DD (2003) Deletion of the P2X7 nucleotide receptor reveals its regulatory roles in bone formation and resorption. Mol Endocrinol 17:1356–1367

    Article  PubMed  CAS  Google Scholar 

  • Klein-Nulend J, Semeins CM, Ajubi NE, Nijweide PJ, Burger EH (1995) Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts—correlation with prostaglandin upregulation. Biochem Biophys Res Commun 217:640–648

    Article  PubMed  CAS  Google Scholar 

  • Lecanda F, Warlow PM, Sheikh S, Furlan F, Steinberg TH, Civitelli R (2000) Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol 151:931–944

    Article  PubMed  CAS  Google Scholar 

  • Li J, Liu D, Ke HZ, Duncan RL, Turner CH (2005) The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem 280:42952–42959

    Article  PubMed  CAS  Google Scholar 

  • Liu TF, Li HY, Atkinson MM, Johnson RG (1996) Comparison of lucifer yellow leakage and cell-to-cell transfer following intracellular injection in normal and antisense Novikoff cells under treatment with low extracellular Ca2+. Methods Find Exp Clin Pharmacol 18:493–497

    PubMed  CAS  Google Scholar 

  • Locovei S, Bao L, Dahl G (2006) Pannexin 1 in erythrocytes: function without a gap. Proc Natl Acad Sci USA 103:7655–7659

    Article  PubMed  CAS  Google Scholar 

  • Locovei S, Scemes E, Qiu F, Spray DC, Dahl G (2007) Pannexin1 is part of the pore forming unit of the P2X7 receptor death complex. FEBS Lett 581:483–488

    Article  PubMed  CAS  Google Scholar 

  • MacVicar BA, Thompson RJ (2010) Non-junction functions of pannexin-1 channels. Trends Neurosci 33:93–102

    Article  PubMed  CAS  Google Scholar 

  • Minkoff R, Rundus VR, Parker SB, Hertzberg EL, Laing JG, Beyer EC (1994) Gap junction proteins exhibit early and specific expression during intramembranous bone formation in the developing chick mandible. Anat Embryol (Berl) 190:231–241

    Article  CAS  Google Scholar 

  • North RA, Surprenant A (2000) Pharmacology of cloned P2X receptors. Annu Rev Pharmacol Toxicol 40:563–580

    Article  PubMed  CAS  Google Scholar 

  • Parpura V, Scemes E, Spray DC (2004) Mechanisms of glutamate release from astrocytes: gap junction “hemichannels,” purinergic receptors and exocytotic release. Neurochem Int 45:259–264

    Article  PubMed  CAS  Google Scholar 

  • Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082

    Article  PubMed  CAS  Google Scholar 

  • Penuela S, Bhalla R, Gong XQ, Cowan KN, Celetti SJ, Cowan BJ, Bai D, Shao Q, Laird DW (2007) Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120:3772–3783

    Article  PubMed  CAS  Google Scholar 

  • Poornima V, Madhupriya M, Kootar S, Sujatha G, Kumar A, Bera AK (2012) P2X7 receptor-pannexin 1 hemichannel association: effect of extracellular calcium on membrane permeabilization. J Mol Neurosci 46:585–594

    Article  PubMed  CAS  Google Scholar 

  • Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J (1995) Cardiac malformation in neonatal mice lacking connexin43. Science 267:1831–1834

    Article  PubMed  CAS  Google Scholar 

  • Reich KM, Frangos JA (1993) Protein kinase C mediates flow-induced prostaglandin E2 production in osteoblasts. Calcif Tissue Int 52:62–66

    Article  PubMed  CAS  Google Scholar 

  • Romanello M, D’Andrea P (2001) Dual mechanism of intercellular communication in HOBIT osteoblastic cells: a role for gap-junctional hemichannels. J Bone Miner Res 16:1465–1476

    Article  PubMed  CAS  Google Scholar 

  • Scemes E, Suadicani SO, Dahl G, Spray DC (2007) Connexin and pannexin mediated cell–cell communication. Neuron Glia Biol 3:199–208

    Article  PubMed  Google Scholar 

  • Schiller PC, D’Ippolito G, Balkan W, Roos BA, Howard GA (2001) Gap-junctional communication is required for the maturation process of osteoblastic cells in culture. Bone 28:362–369

    Article  PubMed  CAS  Google Scholar 

  • Schwarze W, Kolb HA (1984) Voltage-dependent kinetics of an anionic channel of large unit conductance in macrophages and myotube membranes. Pflugers Arch 402:281–291

    Article  PubMed  CAS  Google Scholar 

  • Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284:18143–18151

    Article  PubMed  CAS  Google Scholar 

  • Sosinsky GE, Boassa D, Dermietzel R, Duffy HS, Laird DW, MacVicar B, Naus CC, Penuela S, Scemes E, Spray DC, Thompson RJ, Zhao HB, Dahl G (2011) Pannexin channels are not gap junction hemichannels. Channels (Austin) 5:193–197

    Article  CAS  Google Scholar 

  • Spray DC, Ye ZC, Ransom BR (2006) Functional connexin “hemichannels”: a critical appraisal. Glia 54:758–773

    Article  PubMed  Google Scholar 

  • Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277:10482–10488

    Article  PubMed  CAS  Google Scholar 

  • Suadicani SO, Brosnan CF, Scemes E (2006) P2X7 receptors mediate ATP release and amplification of astrocytic intercellular Ca2+ signaling. J Neurosci 26:1378–1385

    Article  PubMed  CAS  Google Scholar 

  • Suadicani SO, Iglesias R, Wang J, Dahl G, Spray DC, Scemes E (2012) ATP signaling is deficient in cultured pannexin1-null mouse astrocytes. Glia 60:1106–1116

    Article  PubMed  Google Scholar 

  • Thi MM, Suadicani SO, Spray DC (2010a) Fluid flow-induced soluble vascular endothelial growth factor isoforms regulate actin adaptation in osteoblasts. J Biol Chem 285:30931–30941

    Article  PubMed  CAS  Google Scholar 

  • Thi MM, Urban-Maldonado M, Spray DC, Suadicani SO (2010b) Characterization of hTERT-immortalized osteoblast cell lines generated from wild-type and connexin43-null mouse calvaria. Am J Physiol Cell Physiol 299:C994–C1006

    Article  PubMed  CAS  Google Scholar 

  • Virginio C, Church D, North RA, Surprenant A (1997) Effects of divalent cations, protons and calmidazolium at the rat P2X7 receptor. Neuropharmacology 36:1285–1294

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Disease [Grants DK091466 (to M.M.T.), DK081435 (to S.O.S.)] and the National Institute of Arthritis and Musculoskeletal and Skin Diseases [Grant AR057139 (to D.C.S)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mia M. Thi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thi, M.M., Islam, S., Suadicani, S.O. et al. Connexin43 and Pannexin1 Channels in Osteoblasts: Who Is the “Hemichannel”?. J Membrane Biol 245, 401–409 (2012). https://doi.org/10.1007/s00232-012-9462-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00232-012-9462-2

Keywords

Navigation