Skip to main content

Advertisement

Log in

Nitrification and denitrification by algae-attached and free-living microorganisms during a cyanobacterial bloom in Lake Taihu, a shallow Eutrophic Lake in China

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Cyanobacterial blooms may stimulate epiphytic nitrification and denitrification in the water column. To validate this hypothesis, a 4-week floating mesocosms experiment that involved a cyanobacterial decay–growth–decay period was conducted at Lake Taihu. In addition to conventional methods for detecting the physical and chemical properties, quantitative real-time PCR was used to identify the nitrification and denitrification genes (archaeal and bacterial amoA, nirS and nirK). Treatment with cyanobacteria led to removal of about 3.62 mg N L−1 total nitrogen, 40% of which was organic nitrogen, indicating a nitrogen transformation and removal mechanism was present in the system. Variations in the biogeochemical properties suggested that remineralization and coupling nitrification and denitrification by epiphytic and pelagic microorganisms was the primary pathway through which organic nitrogen was removed. The results of this study revealed that algal blooms can accelerate nitrogen removal efficiency, which may be the primary reason that nitrogen is limited in summer in Lake Taihu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akunna JC, Bizeau C, Moletta R (1993) Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: glucose, glycerol, acetic acid, lactic acid and methanol. Water Res 27(8):1303–1312

    Article  Google Scholar 

  • An S, Joye SB (2001) Enhancement of coupled nitrification-denitrification by benthic photosynthesis in shallow estuarine sediments. Limnol Oceanogr 46(1):62–74

    Article  Google Scholar 

  • Andersen T, Jensen M, Sørensen J (1984) Diurnal variation of nitrogen cycling in coastal, marine sediments. Mar Biol 83(2):171–176

    Article  Google Scholar 

  • Braker G, Zhou J, Wu L, Devol AH, Tiedje JM (2000) Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in pacific northwest marine sediment communities. Appl Environ Microbiol 66(5):2096–2104

    Article  Google Scholar 

  • Brandes JA, Devol AH, Deutsch C (2007) New developments in the marine nitrogen cycle. Chem Rev 107(2):577–589

    Article  Google Scholar 

  • Brunberg A-K (1999) Contribution of bacteria in the mucilage of Microcystis spp. (Cyanobacteria) to benthic and pelagic bacterial production in a hypereutrophic lake. FEMS Microbiol Ecol 29(1):13–22

    Article  Google Scholar 

  • Cardinale BJ (2011) Cardinale reply. Nature 477(7366):E3–E4

    Article  Google Scholar 

  • Chen P, Zhou Q, Paing J, Le H, Picot B (2003) Nutrient removal by the integrated use of high rate algal ponds and macrophyte systems in China. Water Sci Technol 48(2):251–257

    Google Scholar 

  • Chen X, Yang L, Xiao L, Miao A, Xi B (2012) Nitrogen removal by denitrification during cyanobacterial bloom in Lake Taihu. J Freshw Ecol 27(2):243–258

    Article  Google Scholar 

  • Choi O, Das A, Yu CP, Hu Z (2010) Nitrifying bacterial growth inhibition in the presence of algae and cyanobacteria. Biotechnol Bioeng 107(6):1004–1011

    Article  Google Scholar 

  • Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol 156(4):457–464

    Article  Google Scholar 

  • de Godos I, Blanco S, García-Encina PA, Becares E, Muñoz R (2009) Long-term operation of high rate algal ponds for the bioremediation of piggery wastewaters at high loading rates. Bioresour Technol 100(19):4332–4339

    Article  Google Scholar 

  • De Philippis R, Vincenzini M (1998) Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol Rev 22(3):151–175

    Article  Google Scholar 

  • Eriksson PG (2001) Interaction effects of flow velocity and oxygen metabolism on nitrification and denitrification in biofilms on submersed macrophytes. Biogeochemistry 55(1):29–44

    Article  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci 102(41):14683–14688

    Article  Google Scholar 

  • Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451(7176):293–296

    Article  Google Scholar 

  • Hamonts K, Clough TJ, Stewart A, Clinton PW, Richardson AE, Wakelin SA, O’Callaghan M, Condron LM (2013) Effect of nitrogen and waterlogging on denitrifier gene abundance, community structure and activity in the rhizosphere of wheat. FEMS Microbiol Ecol 83(3):568–584

    Article  Google Scholar 

  • Hansen L, Blackburn T (1992) Effect of algal bloom deposition on sediment respiration and fluxes. Mar Biol 112(1):147–152

    Article  Google Scholar 

  • Hou J, Song C, Cao X, Zhou Y (2013) Shifts between ammonia-oxidizing bacteria and archaea in relation to nitrification potential across trophic gradients in two large Chinese lakes (Lake Taihu and Lake Chaohu). Water Res 47(7):2285–2296

    Article  Google Scholar 

  • Jiang L, Yang L, Xiao L, Shi X, Gao G, Qin B (2007) Quantitative studies on phosphorus transference occuring between Microcystis aeruginosa and its attached bacterium (Pseudomonas sp.). Hydrobiologia 581(1):161–165

    Article  Google Scholar 

  • Kester RA, De Boer W, Laanbroek HJ (1997) Production of NO and N2 O by pure cultures of nitrifying and denitrifying bacteria during changes in aeration. Appl Environ Microbiol 63(10):3872–3877

    Google Scholar 

  • Lai PC, Lam PK (1997) Major pathways for nitrogen removal in waste water stabilization ponds. Water Air Soil Pollut 94(1–2):125–136

    Google Scholar 

  • Law CS, Rees AP, Owens NJP (1993) Nitrous oxide production by estuarine epiphyton. Limnol Oceanogr 38(2):435–441

    Article  Google Scholar 

  • Li H, Xing P, Chen M, Bian Y, Wu QL (2011) Short-term bacterial community composition dynamics in response to accumulation and breakdown of Microcystis blooms. Water Res 45(4):1702–1710

    Article  Google Scholar 

  • Loken LC, Small GE, Finlay JC, Sterner RW, Stanley EH (2016) Nitrogen cycling in a freshwater estuary. Biogeochemistry 127(2–3):1–18

    Google Scholar 

  • Mccarthy MJ, Lavrentyev PJ, Yang L, Zhang L, Chen Y, Qin B, Gardner WS (2007) Nitrogen dynamics and microbial food web structure during a summer cyanobacterial bloom in a subtropical, shallow, well-mixed, eutrophic lake (Lake Taihu, China). Hydrobiologia 581(1):195–207

    Article  Google Scholar 

  • McMillan SK, Piehler MF, Thompson SP, Paerl HW (2010) Denitrification of nitrogen released from senescing algal biomass in coastal agricultural headwater streams. J Environ Qual 39(1):274–281

    Article  Google Scholar 

  • Michotey V, Méjean V, Bonin P (2000) Comparison of methods for quantification of cytochrome cd(1)-denitrifying bacteria in environmental marine samples. Appl Environ Microbiol 66(4):1564–1571

    Article  Google Scholar 

  • Nguyen M-L, Westerhoff P, Baker L, Hu Q, Esparza-Soto M, Sommerfeld M (2005) Characteristics and reactivity of algae-produced dissolved organic carbon. J Environ Eng 131(11):1574–1582

    Article  Google Scholar 

  • Niu Y, Shen H, Chen J, Xie P, Yang X, Tao M, Ma Z, Qi M (2011) Phytoplankton community succession shaping bacterioplankton community composition in Lake Taihu, China. Water Res 45(14):4169–4182

    Article  Google Scholar 

  • Paraskaki I, Lazaridis M (2005) Quantification of landfill emissions to air: a case study of the Ano Liosia landfill site in the greater Athens area. Waste Manag Res 23(3):199–208

    Article  Google Scholar 

  • Petersen DG, Blazewicz SJ, Firestone M, Herman DJ, Turetsky M, Waldrop M (2012) Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ Microbiol 14(4):993–1008

    Article  Google Scholar 

  • Poulson SR, Sullivan AB (2010) Assessment of diel chemical and isotopic techniques to investigate biogeochemical cycles in the upper Klamath River, Oregon, USA. Chem Geol 269(1):3–11

    Article  Google Scholar 

  • Purkhold U, Pommerening-Röser A, Juretschko S, Schmid MC, Koops HP, Wagner M (2000) Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl Environ Microbiol 66(12):5368–5382

    Article  Google Scholar 

  • Risgaard-Petersen N, Rysgaard S, Nielsen LP, Revsbech NP (1994) Diurnal variation of denitrification and nitrification in sediments colonized by benthic microphytes. Limnol Oceanogr 39(3):573–579

    Article  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63(12):4704–4712

    Google Scholar 

  • Scheffer M, Jeppesen E (1998) Alternative stable states. In: The structuring role of submerged macrophytes in lakes. Springer, pp 397–406

  • Shang J, Zhang L, Shi C, Fan C (2013) Influence of Chironomid Larvae on oxygen and nitrogen fluxes across the sediment-water interface (Lake Taihu, China). J Environ Sci 25(5):978–985

    Article  Google Scholar 

  • Smyth AR, Thompson SP, Siporin KN, Gardner WS, Mccarthy MJ, Piehler MF (2013) Assessing nitrogen dynamics throughout the estuarine landscape. Estuar Coasts 36(1):44–55

    Article  Google Scholar 

  • Strauss EA, Mitchell NL, Lamberti GA (2002) Factors regulating nitrification in aquatic sediments: effects of organic carbon, nitrogen availability, and pH. Can J Fish Aquat Sci 59(3):554–563

    Article  Google Scholar 

  • Takács I, Vanrolleghem P (2006) Elemental balances in activated sludge modelling. In: Proceedings of IWA World Water Congress, pp 10–14

  • Thouvenot M, Billen G, Garnier J (2007) Modelling nutrient exchange at the sediment–water interface of river systems. J Hydrol 341(1):55–78

    Article  Google Scholar 

  • Tiedje JM (1988) Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnde AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 179–244

    Google Scholar 

  • Tuomainen JM, Hietanen S, Kuparinen J, Martikainen PJ, Servomaa K (2003) Baltic Sea cyanobacterial bloom contains denitrification and nitrification genes, but has negligible denitrification activity. FEMS Microbiol Ecol 45(2):83–96

    Article  Google Scholar 

  • Wang Y, Li Z, Zhou L, Feng L, Fan N, Shen J (2013) Effects of macrophyte-associated nitrogen cycling bacteria on denitrification in the sediments of the eutrophic Gonghu Bay, Taihu Lake. Hydrobiologia 700(1):329–341

    Article  Google Scholar 

  • Xu H, Paerl HW, Qin B, Zhu G, Guang G (2010) Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnol Oceanogr 55(1):420–432

    Article  Google Scholar 

  • Xu H, Paerl HW, Qin B, Zhu G, Hall NS, Wu Y (2015) Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Environ Sci Technol 49(2):1051–1059

    Article  Google Scholar 

  • Zhong J, Fan C, Liu G, Lei Z, Shang J, Gu X (2010) Seasonal variation of potential denitrification rates of surface sediment from Meiliang Bay, Taihu Lake, China. J Environ Sci 22(7):961–967

    Article  Google Scholar 

  • Zhu M, Zhu G, Zhao L, Yao X, Zhang Y, Gao G, Qin B (2013) Influence of algal bloom degradation on nutrient release at the sediment–water interface in Lake Taihu, China. Environ Sci Pollut Res Int 20(3):1803–1811

    Article  Google Scholar 

  • Zumft WG (1992) The denitrifying prokaryotes. Prokaryotes 1:554–582

    Google Scholar 

Download references

Acknowledgements

We are grateful to the Taihu Laboratory for Lake Ecosystem Research (TLLER) for providing the experimental fields and other technical helps. This research was financially supported by National Natural Science Foundation of China (Contracts 41373076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Chen.

Additional information

Responsible Editor: Jennifer Leah Tank.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Jiang, H., Sun, X. et al. Nitrification and denitrification by algae-attached and free-living microorganisms during a cyanobacterial bloom in Lake Taihu, a shallow Eutrophic Lake in China. Biogeochemistry 131, 135–146 (2016). https://doi.org/10.1007/s10533-016-0271-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-016-0271-z

Keywords

Navigation