Skip to main content
Log in

The effect and biological mechanism of granular sludge size on performance of autotrophic nitrogen removal system

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

The autotrophic process for nitrogen removal has attracted worldwide attention in the field of wastewater treatment, and the performance of this process is greatly influenced by the size of granular sludge particles present in the system. In this work, the granular sludge was divided into three groups, i.e. large size (> 1.2 mm), medium size (0.6–1.2 mm) and small size (< 0.6 mm). The medium granular sludge was observed to dominate at high volumetric nitrogen loading rates, while offering strong support for good performance. Its indispensable contribution was found to originate from improved settling velocity (0.84 ± 0.10 cm/s), high SOUR-A (specific oxygen uptake rate for ammonia oxidizing bacteria, 25.93 mg O2/g MLVSS/h), low SOUR-N (specific oxygen uptake rate for nitrite oxidizing bacteria, 3.39 mg O2/g MLVSS/h), and a reasonable microbial spatial distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amann RI (1995) In situ identification of micro-organisms by whole cell hybridization with rRNA-targeted nucleic acid probes. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual. Springer, New York, pp 331–345

    Chapter  Google Scholar 

  • APHA-AWWA-WEF (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington, DC

    Google Scholar 

  • Bouwman AM, Bosma JC, Vonk P, Wesselingh JHA, Frijlink HW (2004) Which shape factor(s) best describe granules? Powder Technol 146:66–72

    Article  CAS  Google Scholar 

  • Bürgmann H, Jenni S, Vazquez F, Udert KM (2011) Regime shift and microbial dynamics in a sequencing batch reactor for nitrification and anammox treatment of urine. Appl Environ Microb 77:5897–5907

    Article  CAS  Google Scholar 

  • Chen J, Zheng P, Yu Y, Mahmood Q, Tang C (2010) Enrichment of high activity nitrifers to enhance partial nitrification process. Bioresour Technol 101:7293–7298

    Article  PubMed  CAS  Google Scholar 

  • Ergas SJ, Aponte-Morales V (2014) 3.8—biological nitrogen removal. In: Ahuja S (ed) Comprehensive water quality and purification. Elsevier, Waltham, pp 123–149

    Chapter  Google Scholar 

  • Fux C, Siegrist H (2004) Nitrogen removal from sludge digester liquids by nitrification/denitrification or partial nitritation/anammox: environmental and economical considerations. Water Sci Technol 50:19–26

    Article  PubMed  CAS  Google Scholar 

  • Ganguly U (1990) On the prediction of terminal settling velocity of solids in liquid–solid systems. Int J Miner Process 29:235–247

    Article  CAS  Google Scholar 

  • Gao DW, Huang XL, Tao Y, Cong Y, Wang XL (2015) Sewage treatment by an UAFB–EGSB biosystem with energy recovery and autotrophic nitrogen removal under different temperatures. Bioresour Technol 181:26–31

    Article  PubMed  CAS  Google Scholar 

  • Ge S, Peng Y, Qiu S, Zhu A, Ren N (2014) Complete nitrogen removal from municipal wastewater via partial nitrification by appropriately alternating anoxic/aerobic conditions in a continuous plug-flow step feed process. Water Res 55:95–105

    Article  PubMed  CAS  Google Scholar 

  • Guillén JS, Jayawardana L, Vazquez CL, de Oliveira Cruz L, Brdjanovic D, van Lier J (2015) Autotrophic nitrogen removal over nitrite in a sponge-bed trickling filter. Bioresour Technol 187:314–325

    Article  CAS  Google Scholar 

  • Guo C-Z, Fu W, Chen X-M, Peng D-C, Jin P-K (2013) Nitrogen-removal performance and community structure of nitrifying bacteria under different aeration modes in an oxidation ditch. Water Res 47:3845–3853

    Article  PubMed  CAS  Google Scholar 

  • Hao X, Wang Q, Zhang X, Cao Y, Mark Loosdrecht CM (2009) Experimental evaluation of decrease in bacterial activity due to cell death and activity decay in activated sludge. Water Res 43:3604–3612

    Article  PubMed  CAS  Google Scholar 

  • Hendrickx TL, Wang Y, Kampman C, Zeeman G, Temmink H, Buisman CJ (2012) Autotrophic nitrogen removal from low strength waste water at low temperature. Water Res 46:2187–2193

    Article  PubMed  CAS  Google Scholar 

  • Jin R-c Hu, B-l Zheng P, Qaisar M, A-h Hu, Islam E (2008) Quantitative comparison of stability of ANAMMOX process in different reactor configurations. Bioresour Technol 99:1603–1609

    Article  PubMed  CAS  Google Scholar 

  • Li S, Chen Y-P, Li C, Guo J-S, Fang F, Gao X (2012) Influence of free ammonia on completely autotrophic nitrogen removal over nitrite (CANON) process. Appl Biochem Biotechnol 167:694–704

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S et al (2010) Microbial community structure in autotrophic nitrifying granules characterized by experimental and simulation analyses. Environ Microbiol 12:192–206

    Article  PubMed  CAS  Google Scholar 

  • Mobarry BK, Wagner M, Urbain V, Rittmann BE, Stahl DA (1996) Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl Environ Microb 62:2156–2162

    CAS  Google Scholar 

  • Mu Y, Ren T-T, Yu H-Q (2008) Drag coefficient of porous and permeable microbial granules. Environ Sci Technol 42:1718–1723

    Article  PubMed  CAS  Google Scholar 

  • Park S, Bae W, Rittmann BE, Kim S, Chung J (2010) Operation of suspended-growth shortcut biological nitrogen removal (SSBNR) based on the minimum/maximum substrate concentration. Water Res 44:1419–1428

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Sanchez A et al (2017) Performance and bacterial community structure of a granular autotrophic nitrogen removal bioreactor amended with high antibiotic concentrations. Chem Eng J 245:993–999

    Google Scholar 

  • Rui D, Cao S, Wang S, Meng N, Peng Y (2016) Performance of partial denitrification (PD)-ANAMMOX process in simultaneously treating nitrate and low C/N domestic wastewater at low temperature. Bioresour Technol 219:420

    Article  CAS  Google Scholar 

  • Satoh H, Miura Y, Tsushima I, Okabe S (2007) Layered structure of bacterial and archaeal communities and their in situ activities in anaerobic granules. Appl Environ Microb 73:7300–7307

    Article  CAS  Google Scholar 

  • Schmid M et al (2003) Candidatus “Scalindua brodae”, sp. nov., Candidatus “Scalindua wagneri”, sp. nov., two new species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol 26:529–538

    Article  PubMed  CAS  Google Scholar 

  • Su KZ, Ni BJ, Yu HQ (2013) Modeling and optimization of granulation process of activated sludge in sequencing batch reactors. Biotechnol Bioeng 110:1312–1322

    Article  PubMed  CAS  Google Scholar 

  • Tang CJ et al (2010) Enrichment features of anammox consortia from methanogenic granules loaded with high organic and methanol contents. Chemosphere 79:613–619

    Article  PubMed  CAS  Google Scholar 

  • Vlaeminck SE et al (2010) Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox. Appl Environ Microb 76:900–909

    Article  CAS  Google Scholar 

  • Volcke EIP, Picioreanu C, De Baets B, van Loosdrecht MCM (2010) Effect of granule size on autotrophic nitrogen removal in a granular sludge reactor. Environ Technol 31:1271–1280

    Article  PubMed  CAS  Google Scholar 

  • Volcke E, Picioreanu C, De Baets B, van Loosdrecht M (2012) The granule size distribution in an anammox-based granular sludge reactor affects the conversion—implications for modeling. Biotechnol Bioeng 109:1629–1636

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Zheng P, Xing YJ, Li W, Yang J, Abbas G et al (2014) Effect of particle size on the performance of autotrophic nitrogen removal in the granular sludge bed reactor and microbiological mechanisms. Bioresour Technol 157:240

    Article  PubMed  CAS  Google Scholar 

  • Winkler MKH, Kleerebezem R, Strous M, Chandran K, van Loosdrecht MCM (2013) Factors influencing the density of aerobic granular sludge. Appl Microbiol Biot 97:7459–7468

    Article  CAS  Google Scholar 

  • Xu D, Xiao E, Xu P, Lin L, Zhou Q, Xu D, Wu Z (2017) Bacterial community and nitrate removal by simultaneous heterotrophic and autotrophic denitrification in a bioelectrochemically-assisted constructed wetland. Bioresour Technol 245:993–999

    Article  PubMed  CAS  Google Scholar 

  • Yao Z-B, Cai Q, Zhang D-J, Xiao P-Y, Lu P-L (2013) The enhancement of completely autotrophic nitrogen removal over nitrite (CANON) by N2H4 addition. Bioresour Technol 146:591–596

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Li D, Liang Y, Zeng H, He Y, Zhang Y, Zhang J (2014) Performance and microbial community of completely autotrophic nitrogen removal over nitrite (CANON) process in two membrane bioreactors (MBR) fed with different substrate levels. Bioresour Technol 152:185–191

    Article  PubMed  CAS  Google Scholar 

  • Zheng P, Lin FM, Hu BL, Chen JS (2004) Start-up of anaerobic ammonia oxidation bioreactor with nitrifying activated sludge. J Environ Sci 16:13–16

    CAS  Google Scholar 

Download references

Acknowledgements

Financial supports of this work by National Natural Science Foundation of China (U1609214;51408570), Major Projects for Science and Technology Development of Zhejiang Province, China (2015C02037), Zhejiang Science and Technology Program key projects, China (2017C03010), and the Research Fund of Tianjin Key Laboratory of Aquatic Science and Technology are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Jun-yuan or Zheng Ping.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ya-juan, X., Jun-yuan, J., Ping, Z. et al. The effect and biological mechanism of granular sludge size on performance of autotrophic nitrogen removal system. Biodegradation 29, 339–347 (2018). https://doi.org/10.1007/s10532-018-9836-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-018-9836-y

Keywords

Navigation