Skip to main content

Advertisement

Log in

Analysis of cuproptosis-related lncRNA signature for predicting prognosis and tumor immune microenvironment in pancreatic cancer

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Pancreatic cancer (PC) is a highly malignant digestive tract tumor, with a dismal 5-year survival rate. Recently, cuproptosis was found to be copper-dependent cell death. This work aims to establish a cuproptosis-related lncRNA signature which could predict the prognosis of PC patients and help clinical decision-making. Firstly, cuproptosis-related lncRNAs were identified in the TCGA-PAAD database. Next, a cuproptosis-related lncRNA signature based on five lncRNAs was established. Besides, the ICGC cohort and our samples from 30 PC patients served as external validation groups to verify the predictive power of the risk signature. Then, the expression of CASC8 was verified in PC samples, scRNA-seq dataset CRA001160, and PC cell lines. The correlation between CASC8 and cuproptosis-related genes was validated by Real-Time PCR. Additionally, the roles of CASC8 in PC progression and immune microenvironment characterization were explored by loss-of-function assay. As showed in the results, the prognosis of patients with higher risk scores was prominently worse than that with lower risk scores. Real-Time PCR and single cell analysis suggested that CASC8 was highly expressed in pancreatic cancer and related to cuproptosis. Additionally, gene inhibition of CASC8 impacted the proliferation, apoptosis and migration of PC cells. Furthermore, CASC8 was demonstrated to impact the expression of CD274 and several chemokines, and serve as a key indicator in tumor immune microenvironment characterization. In conclusion, the cuproptosis-related lncRNA signature could provide valuable indications for the prognosis of PC patients, and CASC8 was a candidate biomarker for not only predicting the progression of PC patients but also their antitumor immune responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data used in this study are all available from the TCGA database (https://portal.gdc.cancer.gov/), Genome Sequence Archive (accession number: CRA001160) at https://bigd.big.ac.cn/bioproject/browse/PRJCA001063, and ICGC database (https://dcc.icgc.org/).

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics. CA 72(1):7–33. https://doi.org/10.3322/caac.21708

    Article  PubMed  Google Scholar 

  2. Park W, Chawla A, O’Reilly EM (2021) Pancreatic cancer: a review. Jama. 326(9):851–862. https://doi.org/10.1001/jama.2021.13027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Advancing on pancreatic cancer. Nat Rev Gastroenterol Hepatol. 18(7):447. https://doi.org/10.1038/s41575-021-00479-5.

  4. Traub B, Link KH, Kornmann M (2021) Curing pancreatic cancer. Semin Cancer Biol 76:232–246. https://doi.org/10.1016/j.semcancer.2021.05.030

    Article  CAS  PubMed  Google Scholar 

  5. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A, Abdusamad M, Rossen J, Joesch-Cohen L, Humeidi R, Spangler RD, Eaton JK, Frenkel E, Kocak M, Corsello SM, Lutsenko S, Kanarek N, Santagata S, Golub TR (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375(6586):1254–1261. https://doi.org/10.1126/science.abf0529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ye Z, Zhuo Q, Hu Q, Xu X, Mengqi L, Zhang Z, Xu W, Liu W, Fan G, Qin Y, Yu X, Ji S (2021) FBW7-NRA41-SCD1 axis synchronously regulates apoptosis and ferroptosis in pancreatic cancer cells. Redox Biol 38:101807. https://doi.org/10.1016/j.redox.2020.101807

    Article  CAS  PubMed  Google Scholar 

  7. Yamamoto K, Venida A, Yano J, Biancur DE, Kakiuchi M, Gupta S, Sohn ASW, Mukhopadhyay S, Lin EY, Parker SJ, Banh RS, Paulo JA, Wen KW, Debnath J, Kim GE, Mancias JD, Fearon DT, Perera RM, Kimmelman AC (2020) Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 581(7806):100–105. https://doi.org/10.1038/s41586-020-2229-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Akimoto M, Maruyama R, Kawabata Y, Tajima Y, Takenaga K (2018) Antidiabetic adiponectin receptor agonist AdipoRon suppresses tumour growth of pancreatic cancer by inducing RIPK1/ERK-dependent necroptosis. Cell Death Dis 9(8):804. https://doi.org/10.1038/s41419-018-0851-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou C, Yi C, Yi Y, Qin W, Yan Y, Dong X, Zhang X, Huang Y, Zhang R, Wei J, Ali DW, Michalak M, Chen XZ, Tang J (2020) LncRNA PVT1 promotes gemcitabine resistance of pancreatic cancer via activating Wnt/β-catenin and autophagy pathway through modulating the miR-619-5p/Pygo2 and miR-619-5p/ATG14 axes. Molecular Cancer 19(1):118. https://doi.org/10.1186/s12943-020-01237-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Huang X, Pan L, Zuo Z, Li M, Zeng L, Li R, Ye Y, Zhang J, Wu G, Bai R, Zhuang L, Wei L, Zheng Y, Su J, Deng J, Deng S, Zhang S, Zhu S, Che X, Wang C, Wu C, Chen R, Lin D, Zheng J (2021) LINC00842 inactivates transcription co-regulator PGC-1α to promote pancreatic cancer malignancy through metabolic remodelling. Nat Commun 12(1):3830. https://doi.org/10.1038/s41467-021-23904-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schober P, Boer C, Schwarte LA (2018) Correlation coefficients: appropriate use and interpretation. Anesth Analgesia 126(5):1763–1768. https://doi.org/10.1213/ane.0000000000002864

    Article  Google Scholar 

  12. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16(5):284–7. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP (2018) Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res 28(11):1747–1756. https://doi.org/10.1101/gr.239244.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim S, Kang D, Huo Z, Park Y, Tseng GC (2018) Meta-analytic principal component analysis in integrative omics application. Bioinformatics 34(8):1321–1328. https://doi.org/10.1093/bioinformatics/btx765

    Article  CAS  PubMed  Google Scholar 

  15. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, Treviño V, Shen H, Laird PW, Levine DA, Carter SL, Getz G, Stemke-Hale K, Mills GB, Verhaak RG (2013) Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun 4:2612. https://doi.org/10.1038/ncomms3612

    Article  CAS  PubMed  Google Scholar 

  16. Hänzelmann S, Castelo R, Guinney J (2013) GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14:7. https://doi.org/10.1186/1471-2105-14-7

    Article  PubMed  PubMed Central  Google Scholar 

  17. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–7. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, Selves J, Laurent-Puig P, Sautès-Fridman C, Fridman WH, de Reyniès A (2016) Genome Biol 17(1):218. https://doi.org/10.1186/s13059-016-1070-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Valero C, Lee M, Hoen D, Wang J, Nadeem Z, Patel N, Postow MA, Shoushtari AN, Plitas G, Balachandran VP, Smith JJ, Crago AM, Long Roche KC, Kelly DW, Samstein RM, Rana S, Ganly I, Wong RJ, Hakimi AA, Berger MF, Zehir A, Solit DB, Ladanyi M, Riaz N, Chan TA, Seshan VE, Morris LGT (2021) The association between tumor mutational burden and prognosis is dependent on treatment context. Nat Genetics 53(1):11–15. https://doi.org/10.1038/s41588-020-00752-4

    Article  CAS  PubMed  Google Scholar 

  20. Cai Y, Wang X, Wang N, Wu J, Ma L, Xie X, Zhang H, Dang C, Kang H, Zhang S, Zhou Z (2021) Correlations between tumor mutation burden and immune infiltrates and their prognostic value in pancreatic cancer by bioinformatic analysis. Life Sci 277:119505. https://doi.org/10.1016/j.lfs.2021.119505

    Article  CAS  PubMed  Google Scholar 

  21. Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T, Kanai Y, Hiraoka N (2013) Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br J Cancer 108(4):914–23. https://doi.org/10.1038/bjc.2013.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen ZG, Wang Y, Fong WP, Hu MT, Liang JY, Wang L, Li YH (2021) A quantitative score of immune cell infiltration predicts the prognosis in pancreatic ductal adenocarcinoma. Int Immunopharmacol 98:107890. https://doi.org/10.1016/j.intimp.2021.107890

    Article  CAS  PubMed  Google Scholar 

  23. Henriksen A, Dyhl-Polk A, Chen I, Nielsen D (2019) Checkpoint inhibitors in pancreatic cancer. Cancer Treat Rev 78:17–30. https://doi.org/10.1016/j.ctrv.2019.06.005

    Article  CAS  PubMed  Google Scholar 

  24. Ma Y, Li J, Wang H, Chiu Y, Kingsley CV, Fry D, Delaney SN, Wei SC, Zhang J, Maitra A, Yee C (2020) Combination of PD-1 inhibitor and OX40 agonist induces tumor rejection and immune memory in mouse models of pancreatic cancer. Gastroenterology 159(1):306-319.e12. https://doi.org/10.1053/j.gastro.2020.03.018

    Article  CAS  PubMed  Google Scholar 

  25. Liu S, Liang J, Liu Z, Zhang C, Wang Y, Watson AH, Zhou C, Zhang F, Wu K, Zhang F, Lu Y, Wang X (2021) The role of CD276 in cancers. Front Oncol 11:654684. https://doi.org/10.3389/fonc.2021.654684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dixon KO, Tabaka M, Schramm MA, Xiao S, Tang R, Dionne D, Anderson AC, Rozenblatt-Rosen O, Regev A, Kuchroo VK (2021) TIM-3 restrains anti-tumour immunity by regulating inflammasome activation. Nature 595(7865):101–106. https://doi.org/10.1038/s41586-021-03626-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhai L, Ladomersky E, Lenzen A, Nguyen B, Patel R, Lauing KL, Wu M, Wainwright DA (2018) IDO1 in cancer: a Gemini of immune checkpoints. Cell Molecular Immunol 15(5):447–457. https://doi.org/10.1038/cmi.2017.143

    Article  CAS  Google Scholar 

  28. Ruffo E, Wu RC, Bruno TC, Workman CJ, Vignali DAA (2019) Lymphocyte-activation gene 3 (LAG3): The next immune checkpoint receptor. Sem Immunol 42:101305. https://doi.org/10.1016/j.smim.2019.101305

    Article  CAS  Google Scholar 

  29. Wu Z, Huang X, Cai M, Huang P, Guan Z (2022) Novel necroptosis-related gene signature for predicting the prognosis of pancreatic adenocarcinoma. Aging 14(2):869–891. https://doi.org/10.18632/aging.203846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jiang P, Yang F, Zou C, Bao T, Wu M, Yang D, Bu S (2021) The construction and analysis of a ferroptosis-related gene prognostic signature for pancreatic cancer. Aging 13(7):10396–10414. https://doi.org/10.18632/aging.202801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) Cell death. New Engl J Med 361(16):1570–83. https://doi.org/10.1056/NEJMra0901217

    Article  CAS  PubMed  Google Scholar 

  32. D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43(6):582–592. https://doi.org/10.1002/cbin.11137

    Article  PubMed  Google Scholar 

  33. Khan I, Yousif A, Chesnokov M, Hong L, Chefetz I (2021) A decade of cell death studies: breathing new life into necroptosis. Pharmacol Therapeutics 220:107717. https://doi.org/10.1016/j.pharmthera.2020.107717

    Article  CAS  Google Scholar 

  34. Zhang M, Wang N, Song P, Fu Y, Ren Y, Li Z, Wang J (2020) LncRNA GATA3-AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1. Cell Prolif 53(9):e12855. https://doi.org/10.1111/cpr.12855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yan Y, Liu J, Xu Z, Ye M, Li J (2021) lncRNA PCAT14 is a diagnostic marker for prostate cancer and is associated with immune cell infiltration. Dis Markers 2021:9494619. https://doi.org/10.1155/2021/9494619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou WY, Zhang MM, Liu C, Kang Y, Wang JO, Yang XH (2019) Long noncoding RNA LINC00473 drives the progression of pancreatic cancer via upregulating programmed death-ligand 1 by sponging microRNA-195–5p. J Cell Physiol 234(12):23176–23189. https://doi.org/10.1002/jcp.28884

    Article  CAS  PubMed  Google Scholar 

  37. Carstens JL, Correa de Sampaio P, Yang D, Barua S, Wang H, Rao A, Allison JP, LeBleu VS, Kalluri R (2017) Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nat Commun 8:15095. https://doi.org/10.1038/ncomms15095

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang J, Li R, Cao Y, Gu Y, Fang H, Fei Y, Lv K, He X, Lin C, Liu H, Zhang H, Li H, He H, Xu J, Huang H (2021) Intratumoral CXCR5(+)CD8(+)T associates with favorable clinical outcomes and immunogenic contexture in gastric cancer. Nat Commun 12(1):3080. https://doi.org/10.1038/s41467-021-23356-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ames E, Canter RJ, Grossenbacher SK, Mac S, Chen M, Smith RC, Hagino T, Perez-Cunningham J, Sckisel GD, Urayama S, Monjazeb AM, Fragoso RC, Sayers TJ, Murphy WJ (2015) NK cells preferentially target tumor cells with a cancer stem cell phenotype. J Immunol 195(8):4010–9. https://doi.org/10.4049/jimmunol.1500447

    Article  CAS  PubMed  Google Scholar 

  40. Gürlevik E, Fleischmann-Mundt B, Brooks J, Demir IE, Steiger K, Ribback S, Yevsa T, Woller N, Kloos A, Ostroumov D, Armbrecht N, Manns MP, Dombrowski F, Saborowski M, Kleine M, Wirth TC, Oettle H, Ceyhan GO, Esposito I, Calvisi DF, Kubicka S, Kühnel F (2016) Administration of gemcitabine after pancreatic tumor resection in mice induces an antitumor immune response mediated by natural killer cells. Gastroenterology 151(2):338-350.e7. https://doi.org/10.1053/j.gastro.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  41. Zhu Y, Knolhoff BL, Meyer MA, Nywening TM, West BL, Luo J, Wang-Gillam A, Goedegebuure SP, Linehan DC, DeNardo DG (2014) CSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer models. Cancer Res 74(18):5057–69. https://doi.org/10.1158/0008-5472.Can-13-3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Beatty GL, Winograd R, Evans RA, Long KB, Luque SL, Lee JW, Clendenin C, Gladney WL, Knoblock DM, Guirnalda PD, Vonderheide RH (2015) Exclusion of T cells from pancreatic carcinomas in mice is regulated by Ly6C(low) F4/80(+) extratumoral macrophages. Gastroenterology 149(1):201–10. https://doi.org/10.1053/j.gastro.2015.04.010

    Article  CAS  PubMed  Google Scholar 

  43. Lin X, Ye L, Wang X, Liao Z, Dong J, Yang Y, Zhang R, Li H, Li P, Ding L, Li T, Zhang W, Xu S, Han X, Xu H, Wang W, Gao H, Yu X, Liu L (2021) Follicular helper T cells remodel the immune microenvironment of pancreatic cancer via secreting CXCL13 and IL-21. Cancers. https://doi.org/10.3390/cancers13153678

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lakshmi Narendra B, Eshvendar Reddy K, Shantikumar S, Ramakrishna S (2013) Immune system: a double-edged sword in cancer. Inflammation Res 62(9):823–34. https://doi.org/10.1007/s00011-013-0645-9

    Article  CAS  Google Scholar 

  45. Chen L, Min J, Wang F (2022) Copper homeostasis and cuproptosis in health and disease. Signal Trans Targeted Ther 7(1):378. https://doi.org/10.1038/s41392-022-01229-y

    Article  CAS  Google Scholar 

  46. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB (2010) Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med 49(11):1603–16. https://doi.org/10.1016/j.freeradbiomed.2010.09.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lv H, Liu X, Zeng X, Liu Y, Zhang C, Zhang Q, Xu J (2022) Comprehensive analysis of cuproptosis-related genes in immune infiltration and prognosis in melanoma. Front Pharmacol 13:930041. https://doi.org/10.3389/fphar.2022.930041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cheng F, Peng G, Lu Y, Wang K, Ju Q, Ju Y, Ouyang M (2022) Relationship between copper and immunity: the potential role of copper in tumor immunity. Front Oncol 12:109153. https://doi.org/10.3389/fonc.2022.1019153

    Article  Google Scholar 

  49. Yang B, Gu B, Zhang J, Xu L, Sun Y (2020) CASC8 lncRNA promotes the proliferation of retinoblastoma cells through downregulating miR34a methylation. Cancer Manag Res 12:13461–13467. https://doi.org/10.2147/cmar.S268380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang X, Guan J, Xu Y, Ren H, Jiang J, Wudu M, Wang Q, Su H, Zhang Y, Zhang B, Zou Z, Hu Y, Sun X, Qiu X (2021) Silencing of CASC8 inhibits non-small cell lung cancer cells function and promotes sensitivity to osimertinib via FOXM1. J Cancer 12(2):387–396. https://doi.org/10.7150/jca.47863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu R, Zhong P, Xiong L, Duan L (2017) Long noncoding RNA cancer susceptibility candidate 8 suppresses the proliferation of bladder cancer cells via regulating glycolysis. DNA Cell Biol 36(9):767–774. https://doi.org/10.1089/dna.2017.3785

    Article  CAS  PubMed  Google Scholar 

  52. Garg B, Giri B, Modi S, Sethi V, Castro I, Umland O, Ban Y, Lavania S, Dawra R, Banerjee S, Vickers S, Merchant NB, Chen SX, Gilboa E, Ramakrishnan S, Saluja A, Dudeja V (2018) NFκB in pancreatic stellate cells reduces infiltration of tumors by cytotoxic T cells and killing of cancer cells, via Up-regulation of CXCL12. Gastroenterology 155(3):880-891.e8. https://doi.org/10.1053/j.gastro.2018.05.051

    Article  CAS  PubMed  Google Scholar 

  53. Hirth M, Gandla J, Höper C, Gaida MM, Agarwal N, Simonetti M, Demir A, Xie Y, Weiss C, Michalski CW, Hackert T, Ebert MP, Kuner R (2020) CXCL10 and CCL21 promote migration of pancreatic cancer cells toward sensory neurons and neural remodeling in tumors in mice. Associated with pain in patients. Gastroenterology 159(2):665-681.e13. https://doi.org/10.1053/j.gastro.2020.04.037

    Article  CAS  PubMed  Google Scholar 

  54. Ge WL, Chen Q, Meng LD, Huang XM, Shi GD, Zong QQ, Shen P, Lu YC, Zhang YH, Miao Y, Zhang JJ, Jiang KR (2020) The YY1/miR-548t-5p/CXCL11 signaling axis regulates cell proliferation and metastasis in human pancreatic cancer. Cell Death Dis 11(4):294. https://doi.org/10.1038/s41419-020-2475-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gao HF, Cheng CS, Tang J, Li Y, Chen H, Meng ZQ, Chen Z, Chen LY (2020) CXCL9 chemokine promotes the progression of human pancreatic adenocarcinoma through STAT3-dependent cytotoxic T lymphocyte suppression. Aging 12(1):502–517. https://doi.org/10.18632/aging.102638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors declare no acknowledgment.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Number 81802317 to Min-Wei Yang; 82003166 to Ding M; 81902377 to De-Jun Liu.)

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, H-FY, D-PX; methodology, H-FY, D-PX, J-HZ, and YX; resources, H-FY, D-PX, J-HZ, and YX; writing—original draft preparation, H-FY, Q-YJ, Y-HZ, JY, R-ZH, X-LF; writing—review and editing, Y-MH, J-YY, J-FZ, Funding acquisition, M-WY, DM, D-JL; Supervision, Y-MH, J-YY, J-FZ. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Yan-Miao Huo, Jian-Yu Yang or Jun-Feng Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study was approved under the number RA-2019-116 assigned by the Research Ethics Committee of Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University.

Informed consent

Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, HF., Xu, DP., Zheng, JH. et al. Analysis of cuproptosis-related lncRNA signature for predicting prognosis and tumor immune microenvironment in pancreatic cancer. Apoptosis 28, 1090–1112 (2023). https://doi.org/10.1007/s10495-023-01843-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01843-3

Keywords

Navigation