Skip to main content

Advertisement

Log in

Immune system: a double-edged sword in cancer

  • Review Article
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

The objective of the review is to examine the role of innate and adaptive immune cells in cancer.

Introduction

Immune system functions as a host defensive mechanism protecting against invading pathogens and transformed cells, including cancer. However, a body of research carried out over the last few decades has disclosed the unexpected role of immune system in fostering the tumor growth.

Methods

A computer-based online search was performed in the PubMed, Scopus and Web of Science databases for articles published, concerning natural killer (NK) cells, Macrophages, CD4+ and CD8+ T cells with relevance to cancer. After finding relevant articles within these search limits, a manual search was conducted through the references from these articles.

Results and Conclusions

This review summarizes the role of immune system in Immunosurveillance and Immunoediting. It then focused mainly on role of macrophages, regulatory T cells (Treg), TH17 cells and on the immunosuppressive mechanisms, which facilitate immune evasion of tumor cells. Our results shows that, immune cells, such as CD8+ cytotoxic T lymphocytes (CTL), CD4+ T helper (TH)1 cells and NK cells along with their characteristic cytokine interferon (IFN)-γ, function as major antitumor effector cells. Whereas CD4+TH2 cells, myeloid-derived suppressor cells (MDSCs) and their derived cytokines function as dominant tumor-promoting forces. In contrast to these cells, macrophages, Treg, and TH17 cells show a dual effect in cancer. Thus, it appears that most components of the immune system are potentially endowed with dual functions i.e., promoting tumor development on the one hand and restraining tumor development on the other and hence immune system can be considered as a double-edged sword in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol. 2011;29:235–71.

    Article  PubMed  CAS  Google Scholar 

  2. Ehrlich P. Ueber den jetzigen Stand der Karzinomforschung. Ned Tijdschr Geneeskd. 1909;5:273–90.

    Google Scholar 

  3. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60.

    Article  PubMed  CAS  Google Scholar 

  4. Strausberg RL. Tumor microenvironments, the immune system and cancer survival. Genome Biol. 2005;6:211–4.

    Article  PubMed  Google Scholar 

  5. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol. 2002;3:991–8.

    Article  PubMed  CAS  Google Scholar 

  6. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21:137–48.

    Article  PubMed  CAS  Google Scholar 

  7. Swann JB, Smyth MJ. Immune surveillance of tumors. J Clin Investig. 2007;117:1137–46.

    Article  PubMed  CAS  Google Scholar 

  8. Cavallo F, De Giovanni C, Nanni P, Forni G, Lollini PL. 2011: the immune hallmarks of cancer. Cancer Immunol Immunother. 2011;60:319–26.

    Article  PubMed  CAS  Google Scholar 

  9. Bidwell BN, Slaney CY, Withana NP, Forster S, Cao Y, Loi S, et al. Silencing of Irf7 pathways in breast cancer cells promotes bone metastasis through immune escape. Nat Med. 2012. doi:10.1038/nm.2830.

    PubMed  Google Scholar 

  10. Bai XF, Liu J, Li O, Zheng P, Liu Y. Antigenic drift as a mechanism for tumor evasion of destruction by cytolytic T lymphocytes. J Clin Investig. 2003;111:1487–96.

    PubMed  CAS  Google Scholar 

  11. Bubenik J. MHC class I down-regulation: tumor escape from immune surveillance? Int J Oncol. 2004;25:487–91.

    PubMed  CAS  Google Scholar 

  12. Lehmann C, Zeis M, Schmitz N, Uharek L. Impaired binding of perforin on the surface of tumor cells is a cause of target cell resistance against cytotoxic effector cells. Blood. 2000;96:594–600.

    PubMed  CAS  Google Scholar 

  13. Real LM, Jimenez P, Kirkin A, Serrano A, García A, Cantón J, et al. Multiple mechanisms of immune evasion can coexist in melanoma tumor cell lines derived from the same patient. Cancer Immunol Immunother. 2001;49:621–8.

    Article  PubMed  CAS  Google Scholar 

  14. Shin MS, Kim HS, Lee SH, Park WS, Kim SY, Park JY, et al. Mutations of tumor necrosis factor-related apoptosis-inducing ligand receptor 1 (TRAIL-R1) and receptor 2 (TRAIL-R2) genes in metastatic breast cancers. Cancer Res. 2001;61:4942–6.

    PubMed  CAS  Google Scholar 

  15. Kowalczyk DW. Tumors and the danger model. Acta Biochim Pol. 2002;49:295–302.

    PubMed  CAS  Google Scholar 

  16. Elpek KG, Lacelle C, Singh NP, Yolcu ES, Shirwan H. CD4+ CD25+ T regulatory cells dominate multiple immune evasion mechanisms in early but not late phases of tumor development in a B cell lymphoma model. J Immunol. 2007;178:6840–8.

    PubMed  CAS  Google Scholar 

  17. Ryschich E, Schmidt J, Hammerling GJ, Klar E, Ganss R. Transformation of the microvascular system during multistage tumorigenesis. Int J Cancer. 2001;97:719–25.

    Article  Google Scholar 

  18. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2, 3-dioxygenase. Nat Med. 2003;9:1269–74.

    Article  PubMed  CAS  Google Scholar 

  19. Beck C, Schreiber H, Rowley DA. Role of TGF-β in immune-evasion of cancer. Microsc Res Tech. 2001;52:387–95.

    Article  PubMed  CAS  Google Scholar 

  20. Kawamura K, Bahar R, Natsume W, Sakiyama S, Tagawa M. Secretion of interleukin-10 from murine colon carcinoma cells suppresses systemic antitumor immunity and impairs protective immunity induced against the tumors. Cancer Gene Ther. 2002;9:109–15.

    Article  PubMed  CAS  Google Scholar 

  21. Zhang XM, Xu Q. Metastatic melanoma cells escape from immunosurveillance through the novel mechanism of releasing nitric oxide to induce dysfunction of immunocytes. Melanoma Res. 2001;11:559–67.

    Article  PubMed  CAS  Google Scholar 

  22. Whiteside TL. Tumor-induced death of immune cells: its mechanisms and consequences. Semin Cancer Biol. 2002;12:43–50.

    Article  PubMed  CAS  Google Scholar 

  23. Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, et al. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Investig. 2006;116:2777–90.

    Article  PubMed  CAS  Google Scholar 

  24. Langers I, Renoux VM, Thiry M, Delvenne P, Jacobs N. Natural killer cells: role in local tumor growth and metastasis. Biologics. 2012;6:73–82.

    PubMed  CAS  Google Scholar 

  25. Haliotis T, Ball JK, Dexter D, Roder JC. Spontaneous and induced primary oncogenesis in natural killer (NK)-cell deficient beige mutant mice. Int J Cancer. 2006;35:505–13.

    Article  Google Scholar 

  26. Gorelik E, Wiltrout RH, Brunda MJ, Holden HT, Herberman RB. Augmentation of metastasis formation by thioglycollate elicited macrophages. Int J Cancer. 1982;29:575–81.

    Article  PubMed  CAS  Google Scholar 

  27. Standish LJ, Sweet ES, Novack J, Wenner CA, Bridge C, Nelson A, et al. Breast cancer and the immune system. J Soc Integr Oncol. 2008;6:158–68.

    PubMed  Google Scholar 

  28. Siveen KS, Kuttan G. Role of macrophages in tumor progression. Immunol Lett. 2009;123:97–102.

    Article  PubMed  CAS  Google Scholar 

  29. Hao NB, Lu MH, Fan YH, Cao YL, Zhang ZR, Yang SM. Macrophages in tumor microenvironments and the progression of tumors. Clin Dev Immunol. 2012;. doi:10.1155/2012/948098.

    PubMed  Google Scholar 

  30. Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2011;11:889–96.

    Article  Google Scholar 

  31. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002;23:549–55.

    Article  PubMed  CAS  Google Scholar 

  32. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol. 2009;27:451–83.

    Article  PubMed  CAS  Google Scholar 

  33. Fairweather D, Cihakova D. Alternatively activated macrophages in infection and autoimmunity. J Autoimmun. 2009;33:222–30.

    Article  PubMed  CAS  Google Scholar 

  34. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25:677–86.

    Article  PubMed  CAS  Google Scholar 

  35. Coffelt SB, Hughes R, Lewis CE. Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim Biophys Acta. 2009;1796:11–8.

    PubMed  CAS  Google Scholar 

  36. Guruvayoorappan C. Tumor versus tumor-associated macrophages: how hot is the link? Integr Cancer Ther. 2008;7:90–5.

    Article  PubMed  CAS  Google Scholar 

  37. Kalinski P. Dendritic cells in immunotherapy of established cancer: roles of signals 1, 2, 3 and 4. Curr Opin Investig Drugs. 2009;10:526–35.

    PubMed  CAS  Google Scholar 

  38. Benencia F, Sprague L, McGinty J, Pate M, Muccioli M. Dendritic cells the tumor microenvironment and the challenges for an effective antitumor vaccination. J Biomed Biotechnol. 2012;2012:425476.

    Article  PubMed  Google Scholar 

  39. Zhou L, Chong MM, Littman DR. Plasticity of CD4+ T cell lineage differentiation. Immunity. 2009;30:646–55.

    Article  PubMed  CAS  Google Scholar 

  40. Wilson CB, Rowell E, Sekimata M. Epigenetic control of T-helper-cell differentiation. Nat Rev Immunol. 2009;9:91–105.

    Article  PubMed  CAS  Google Scholar 

  41. Munk ME, Emoto M. Functions of T-cell subsets and cytokines in mycobacterial infections. Eur Respir J Suppl. 1995;20:668–75.

    Google Scholar 

  42. Romagnani S, Parronchi P, D’Elios MM, Romagnani P, Annunziato F, Piccinni MP, et al. An update on human TH1 and TH2 cells. Int Arch Allergy Immunol. 1997;113:153–6.

    Article  PubMed  CAS  Google Scholar 

  43. Lai YP, Jeng CJ, Chen SC. The roles of CD4+ T cells in tumor immunity. ISRN Immunology. 2011. doi:10.5402/2011/497397.

    Google Scholar 

  44. Parker DC. T cell-dependent B cell activation. Annu Rev Immunol. 1993;11:331–60.

    Article  PubMed  CAS  Google Scholar 

  45. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, et al. Interleukin-17 producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol. 2005;6:1123–32.

    Article  PubMed  CAS  Google Scholar 

  46. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell. 2006;126:1121–33.

    Article  PubMed  CAS  Google Scholar 

  47. Tesmer LA, Lundy SK, Sarkar S, Fox DA. TH17 cells in human disease. Immunol Rev. 2008;223:87–113.

    Article  PubMed  CAS  Google Scholar 

  48. Ghoreschi K, Laurence A, Yang XP, Tato CM, McGeachy MJ, Konkel JE, et al. Generation of pathogenic TH17 cells in the absence of TGF-β signalling. Nature. 2010;467:967–71.

    Article  PubMed  CAS  Google Scholar 

  49. Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, et al. Late developmental plasticity in the T helper 17 lineage. Immunity. 2009;30:92–107.

    Article  PubMed  CAS  Google Scholar 

  50. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, et al. IL-21 and TGF-β are required for differentiation of human TH17 cells. Nature. 2008;454:350–2.

    Article  PubMed  CAS  Google Scholar 

  51. Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I. Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood. 2008;112:2340–52.

    Article  PubMed  CAS  Google Scholar 

  52. Valmori D, Raffin C, Raimbaud I, Ayyoub M. Human RORγt+ TH17 cells preferentially differentiate from naive FOXP3+ Treg in the presence of lineage-specific polarizing factors. Proc Natl Acad Sci USA. 2010;107:19402–7.

    Article  PubMed  CAS  Google Scholar 

  53. Ye J, Su X, Hsueh EC, Zhang Y, Koenig JM, Hoft DF, et al. Human tumor-infiltrating TH17 cells have the capacity to differentiate into IFN-γ+ and FOXP3+ T cells with potent suppressive function. Eur J Immunol. 2011;41:936–51.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang JP, Yan J, Xu J, Pang XH, Chen MS, Li L, et al. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol. 2009;50:980–9.

    Article  PubMed  CAS  Google Scholar 

  55. Tosolini M, Kirilovsky A, Mlecnik B, Fredriksen T, Mauger S, Bindea G, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (TH1, TH2, Treg, TH17) in patients with colorectal cancer. Cancer Res. 2011;71:1263–71.

    Article  PubMed  CAS  Google Scholar 

  56. He S, Fei M, Wu Y, Zheng D, Wan D, Wang L, et al. Distribution and clinical significance of TH17 cells in the tumor microenvironment and peripheral blood of pancreatic cancer patients. Int J Mol Sci. 2011;12:7424–37.

    Article  PubMed  CAS  Google Scholar 

  57. Miyahara Y, Odunsi K, Chen W, Peng G, Matsuzaki J, Wang RF. Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci USA. 2008;105:15505–10.

    Article  PubMed  CAS  Google Scholar 

  58. Zhang YL, Li J, Mo HY, Qiu F, Zheng LM, Qian CN, et al. Different subsets of tumor infiltrating lymphocytes correlate with NPC progression in different ways. Mol Cancer. 2010;9:4.

    Article  PubMed  Google Scholar 

  59. Martin F, Apetoh L, Ghiringhelli F. Controversies on the role of TH17 in cancer: a TGF-β-dependent immunosuppressive activity? Trends Mol Med. 2012;18:742–9.

    Article  PubMed  CAS  Google Scholar 

  60. Chalmin F, Mignot G, Bruchard M, Chevriaux A, Végran F, Hichami A, et al. Stat3 and Gfi-1 transcription factors control TH17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity. 2012;36:362–73.

    Article  PubMed  CAS  Google Scholar 

  61. Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204:1257–65.

    Article  PubMed  CAS  Google Scholar 

  62. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.

    PubMed  CAS  Google Scholar 

  63. Tan W, Zhang W, Strasner A, Grivennikov S, Cheng JQ, Hoffman RM, et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature. 2011;470:548–53.

    Article  PubMed  CAS  Google Scholar 

  64. Raimondi G, Turner MS, Thomson AW, Morel PA. Naturally occurring regulatory T cells: recent insights in health and disease. Crit Rev Immunol. 2007;27:61–95.

    Article  PubMed  CAS  Google Scholar 

  65. Bergmann C, Strauss L, Zeidler R, Lang S, Whiteside TL. Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res. 2007;67:8865–73.

    Article  PubMed  CAS  Google Scholar 

  66. Roncarolo MG, Bacchetta R, Bordignon C, Narula S, Levings MK. Type 1 T regulatory cells. Immunol Rev. 2002;182:68–79.

    Article  Google Scholar 

  67. Feng LL, Wang X. Targeting Foxp3+ regulatory T cells-related immunosuppression for cancer immunotherapy. Chin Med J. 2010;123:3334–42.

    PubMed  CAS  Google Scholar 

  68. Roncarolo MG, Gregori S, Battaglia M, Bacchetta R, Fleischhauer K, Levings MK. Interleukin-10 secreting type 1 regulatory T cells in rodents and humans. Immunol Rev. 2006;212:28–50.

    Article  PubMed  CAS  Google Scholar 

  69. Mandapathil M, Lang S, Gorelik E, Whiteside TL. Isolation of functional human regulatory T cells (Treg) from the peripheral blood based on the CD39 expression. J Immunol Methods. 2009;346:55–63.

    Article  PubMed  CAS  Google Scholar 

  70. Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumor network: myeloid derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013;138:105–15.

    Article  PubMed  CAS  Google Scholar 

  71. Whiteside TL. What are regulatory T cells (Treg) regulating in cancer and why? Semin Cancer Biol. 2012;22:327–34.

    Article  PubMed  CAS  Google Scholar 

  72. Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007;450:566–9.

    Article  PubMed  CAS  Google Scholar 

  73. Strauss L, Bergmann C, Szczepanski M, Gooding W, Johnson JT, Whiteside TL. A unique subset of CD4+ CD25 highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-β1 mediates suppression in the tumor microenvironment. Clin Cancer Res. 2007;13:4345–54.

    Article  PubMed  CAS  Google Scholar 

  74. Cao X, Cai SF, Fehniger TA, Song J, Collins LI, Piwnica-Worms DR, et al. Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity. 2007;27:635–46.

    Article  PubMed  CAS  Google Scholar 

  75. Oberle N, Eberhardt N, Falk CS, Krammer PH, Suri-Payer E. Rapid suppression of cytokine transcription in human CD4+ CD25+ T cells by CD4+ Foxp3+ regulatory T cells: independence of IL-2 consumption, TGF-β, and various inhibitors of TCR signaling. J Immunol. 2007;179:3578–87.

    PubMed  CAS  Google Scholar 

  76. Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ. CD4+ CD25+ Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007;8:1353–62.

    Article  PubMed  CAS  Google Scholar 

  77. Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, et al. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood. 2007;110:1225–32.

    Article  PubMed  CAS  Google Scholar 

  78. Liu XQ, Wang X. Indoleamine 2, 3-dioxygenase in tumor induced tolerance. Chin Med J. 2009;122:3072–7.

    PubMed  CAS  Google Scholar 

  79. Munn DH, Mellor AL. Indoleamine 2, 3-dioxygenase and tumor-induced tolerance. J Clin Investig. 2007;117:1147–54.

    Article  PubMed  CAS  Google Scholar 

  80. Orabona C, Puccetti P, Vacca C, Bicciato S, Luchini A, Fallarino F, et al. Toward the identification of a tolerogenic signature in IDO-competent dendritic cells. Blood. 2006;107:2846–54.

    Article  PubMed  CAS  Google Scholar 

  81. Gao Q, Qiu SJ, Fan J, Zhou J, Wang XY, Xiao YS, et al. Intratumoral balance of regulatory and cytotoxic T cells is associated with prognosis of hepatocellular carcinoma after resection. J Clin Oncol. 2007;25:2586–93.

    Article  PubMed  Google Scholar 

  82. Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10:942–9.

    Article  PubMed  CAS  Google Scholar 

  83. Hiraoka N, Onozato K, Kosuge T, Hirohashi S. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006;12:5423–34.

    Article  PubMed  CAS  Google Scholar 

  84. Jordanova ES, Gorter A, Ayachi O, Prins F, Durrant LG, Kenter GG, van der Burg SH, et al. Human leukocyte antigen class I, MHC class I chain-related molecule A, and CD8+/regulatory T-cell ratio: which variable determines survival of cervical cancer patients? Clin Cancer Res. 2008;14:2028–35.

    Article  PubMed  CAS  Google Scholar 

  85. Petersen RP, Campa MJ, Sperlazza J, Conlon D, Joshi MB, Harpole DH, et al. Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer. 2006;107:2866–72.

    Article  PubMed  Google Scholar 

  86. Bates GJ, Fox SB, Han C, Leek RD, Garcia JF, Harris AL, et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol. 2006;24:5373–80.

    Article  PubMed  Google Scholar 

  87. Merlo A, Casalini P, Carcangiu ML, Malventano C, Triulzi T, Menard S, et al. FOXP3 expression and overall survival in breast cancer. J Clin Oncol. 2009;27:1746–52.

    Article  PubMed  CAS  Google Scholar 

  88. Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay Nel H, et al. Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res. 2006;12:465–72.

    Article  PubMed  CAS  Google Scholar 

  89. Frey DM, Droeser RA, Viehl CT, Zlobec I, Lugli A, Zingg U, et al. High frequency of tumor-infiltrating FOXP3+ regulatory T cells predicts improved survival in mismatch repair-proficient colorectal cancer patients. Int J Cancer. 2010;126:2635–43.

    PubMed  CAS  Google Scholar 

  90. Ladoire S, Martin FO, Ghiringhelli FO. Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol Immunother. 2011;60:909–18.

    Article  PubMed  CAS  Google Scholar 

  91. Salama P, Phillips M, Grieu F, Morris M, Zeps N, Joseph D, et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27:186–92.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Ahmed kamal, Project Director, NIPER-Hyderabad, for his support and constant encouragement. This work is partially supported by grant from CSIR under CSC 0111 (SMiLE).

Conflict of interest

We declared no conflict of interest in this present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sistla Ramakrishna.

Additional information

Responsible Editor: Ikuo Morita.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmi Narendra, B., Eshvendar Reddy, K., Shantikumar, S. et al. Immune system: a double-edged sword in cancer. Inflamm. Res. 62, 823–834 (2013). https://doi.org/10.1007/s00011-013-0645-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-013-0645-9

Keywords

Navigation