Skip to main content

Advertisement

Log in

Bibliometric analysis and mini-review of global research on pyroptosis in the field of cancer

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Pyroptosis is one of the mechanisms of programmed cell death (PCD) activated by inflammasomes and involved by the caspase family and the gasdermin family. During the oncogenesis and progression of tumors, pyroptosis is crucial, and complex withal. Currently, pyroptosis is the focus topic in the research field of oncology, but there is no single bibliometric analysis systematically studying ‘pyroptosis and cancer’. Our study aimed to visualize the research status of pyroptosis in oncology and excavate the hotspots and prospects in this field. Furthermore, in consideration of the professional direction of researchers, we particularly emphasized articles on pyroptosis in gynecology and formed a mini systematic review. This bibliometric work integrated and analyzed all articles from ISI Web of Science: Science Citation Index Expanded (SCI-Expanded) (dated April 25th, 2022), based on quantitative and visual mapping approaches. Systematically reviewing articles on pyroptosis in gynecology helped us complement our analysis of research advancements in this field. Including 634 articles, our study found that the number of articles on pyroptosis in cancer increased exponentially in recent years. These publications came from 45 countries and regions headed by China and the US mainly aiming at the mechanism of pyroptosis in cell biology and biochemistry molecular biology, as well as the role of pyroptosis in the development and therapeutic application of various cancers. The top 20 most cited studies on this topic mostly came from the US, followed by China and England, and half of the articles cited more than 100 times in total were published in Nature. Moreover, as for gynecologic cancer, in vitro and bioinformatics analysis were the main methodology conducting to explore roles of pyroptosis-related genes (PRGs) and formation of inflammasomes in cancer progression and prognosis. Pyroptosis has evolved into a burgeoning research field in oncology. The cellular and molecular pathway mechanism of pyroptosis, as well as the effect of pyroptosis in oncogenesis, progression, and treatment have been the hot topic of the current study and provided us the future direction as the potential opportunities and challenges. We advocate more active cooperation to improve therapeutic strategies for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated and/or analysed during the current study are available in the Web of Science™ (WOS).

References

  1. Erratum (2020) : Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA: a cancer journal for clinicians 70(4) 313

  2. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  3. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways, Nature reviews. Mol cell biology 15(2):135–147

    CAS  Google Scholar 

  4. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, Bodmer JL, Schneider P, Seed B, Tschopp J (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1(6):489–495

    Article  CAS  PubMed  Google Scholar 

  5. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148(1–2):213–227

    Article  CAS  PubMed  Google Scholar 

  6. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion, Nature reviews. Mol cell biology 11(10):700–714

    CAS  Google Scholar 

  7. Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science (New York, N.Y.) 325(5938):332–336

    Article  CAS  PubMed  Google Scholar 

  8. Zychlinsky A, Prevost MC, Sansonetti PJ (1992) Shigella flexneri induces apoptosis in infected macrophages. Nature 358(6382):167–169

    Article  CAS  PubMed  Google Scholar 

  9. Cookson BT, Brennan MA (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9(3):113–114

    Article  CAS  PubMed  Google Scholar 

  10. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535(7610):153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665

    Article  CAS  PubMed  Google Scholar 

  12. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ, Han J (2015) Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 25(12):1285–1298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Freeman TL, Swartz TH (2020) Targeting the NLRP3 inflammasome in severe COVID-19. Front Immunol 11:1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang M, He Q, Chen G, Li PA (2020) Suppression of NLRP3 inflammasome, pyroptosis, and cell death by NIM811 in rotenone-exposed cells as an in vitro model of Parkinson’s Disease. Neurodegener Dis 20(2–3):73–83

    Article  CAS  PubMed  Google Scholar 

  15. Xia S, Yang P, Li F, Yu Q, Kuang W, Zhu Y, Lu J, Wu H, Li L, Huang H (2021) Chaihu-Longgu-Muli Decoction exerts an antiepileptic effect in rats by improving pyroptosis in hippocampal neurons. J Ethnopharmacol 270:113794

    Article  CAS  PubMed  Google Scholar 

  16. Thi HTH, Hong S (2017) Inflammasome as a therapeutic target for Cancer Prevention and Treatment. J Cancer Prev 22(2):62–73

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhou CB, Fang JY (2019) The role of pyroptosis in gastrointestinal cancer and immune responses to intestinal microbial infection. Biochim Biophys Acta Rev Cancer 1872(1):1–10

    Article  CAS  PubMed  Google Scholar 

  18. Nagarajan K, Soundarapandian K, Thorne RF, Li D, Li D (2019) Activation of Pyroptotic Cell Death Pathways in Cancer: an Alternative Therapeutic Approach. Transl Oncol 12(7):925–931

    Article  PubMed  PubMed Central  Google Scholar 

  19. Smith DR (2008) Bibliometrics, dermatology and contact dermatitis. Contact Dermat 59(3):133–136

    Article  Google Scholar 

  20. Kornberg D (2021) Publisher’s note: competing for jurisdiction: practical legitimation and the persistence of Informal Recycling in Urban India. Soc Cognit Affect Neurosci 16(6):643

    Article  Google Scholar 

  21. Erren TC, Cullen P, Erren M (2009) How to surf today’s information tsunami: on the craft of effective reading. Med Hypotheses 73(3):278–279

    Article  PubMed  Google Scholar 

  22. Pautasso M (2013) Ten simple rules for writing a literature review. PLoS Comput Biol 9(7):e1003149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ma C, Su H, Li H (2020) Global Research Trends on prostate Diseases and Erectile Dysfunction: a bibliometric and visualized study. Front Oncol 10:627891

    Article  PubMed  Google Scholar 

  24. Sabe M, Pillinger T, Kaiser S, Chen C, Taipale H, Tanskanen A, Tiihonen J, Leucht S, Correll CU, Solmi M (2022) Half a century of research on antipsychotics and schizophrenia: a scientometric study of hotspots, nodes, bursts, and trends. Neurosci Biobehav Rev 136:104608

    Article  PubMed  Google Scholar 

  25. Cheng K, Guo Q, Yang W, Wang Y, Sun Z, Wu H (2022) Mapping knowledge landscapes and emerging Trends of the Links between Bone Metabolism and Diabetes Mellitus: a bibliometric analysis from 2000 to 2021. Front public health 10:918483

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cheng K, Guo Q, Shen Z, Yang W, Zhou Y, Sun Z, Yao X, Wu H (2022) Frontiers of ferroptosis research: an analysis from the top 100 most influential articles in the field. Front Oncol 12:948389

    Article  PubMed  PubMed Central  Google Scholar 

  27. Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U, Hausegger K, Hirsch JA, Shazam Hussain M, Jansen O, Jayaraman MV, Khalessi AA, Kluck BW, Lavine S, Meyers PM, Ramee S, Rüfenacht DA, Schirmer CM (2018) Vorwerk, Multisociety Consensus Quality Improvement revised Consensus Statement for Endovascular Therapy of Acute ischemic stroke. Int J stroke: official J Int Stroke Soc 13(6):612–632

    Google Scholar 

  28. Aria M, Cuccurullo C (2017) bibliometrix: an R-tool for comprehensive science mapping analysis. J Informetrics 11(4):959–975

    Article  Google Scholar 

  29. Sagulenko V, Thygesen SJ, Sester DP, Idris A, Cridland JA, Vajjhala PR, Roberts TL, Schroder K, Vince JE, Hill JM, Silke J (2013) Stacey, AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death Differ 20(9):1149–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K, Shao F (2017) Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547(7661):99–103

    Article  CAS  PubMed  Google Scholar 

  31. Möller C, Dreborg S, Lanner A, Björkstén B (1986) Oral immunotherapy of children with rhinoconjunctivitis due to birch pollen allergy. A double blind study. Allergy 41(4):271–279

    Article  PubMed  Google Scholar 

  32. Chen C, CiteSpace II (2006) Detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inform Sci Technol 57(3):359–377

    Article  Google Scholar 

  33. Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL, Cheng K, Sun RY, Zhou D, Han J, Wu Q (2018) Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res 28(12):1171–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yu J, Li S, Qi J, Chen Z, Wu Y, Guo J, Wang K, Sun X, Zheng J (2019) Cleavage of GSDME by caspase-3 determines lobaplatin-induced pyroptosis in colon cancer cells. Cell Death Dis 10(3):193

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang Y, Yin B, Li D, Wang G, Han X, Sun X (2018) GSDME mediates caspase-3-dependent pyroptosis in gastric cancer. Biochem Biophys Res Commun 495(1):1418–1425

    Article  CAS  PubMed  Google Scholar 

  36. Hergueta-Redondo M, Sarrio D, Molina-Crespo A, Megias D, Mota A, Rojo-Sebastian A, Garcia-Sanz P, Morales S, Abril S, Cano A, Peinado H, Moreno-Bueno G (2014) Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS ONE 9(3):e90099

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, Sengupta S, Yao Y, Wu H, Lieberman J (2020) Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature 579(7799):415–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. D’Souza CA, Heitman J (2001) Dismantling the Cryptococcus coat. Trends Microbiol 9(3):112–113

    Article  PubMed  Google Scholar 

  39. Kurokawa M, Kornbluth S (2009) Caspases and kinases in a death grip. Cell 138(5):838–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26(4):239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen X, He WT, Hu L, Li J, Fang Y, Wang X, Xu X, Wang Z, Huang K, Han J (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26(9):1007–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rudel T, Bokoch GM (1997) Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science 276(5318):1571–1574

    Article  CAS  PubMed  Google Scholar 

  43. Tomiyoshi G, Horita Y, Nishita M, Ohashi K, Mizuno K (2004) Caspase-mediated cleavage and activation of LIM-kinase 1 and its role in apoptotic membrane blebbing. Genes Cells 9(6):591–600

    Article  CAS  PubMed  Google Scholar 

  44. Tang R, Xu J, Zhang B, Liu J, Liang C, Hua J, Meng Q, Yu X, Shi S (2020) Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol 13(1):110

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fink SL, Cookson BT (2006) Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol 8(11):1812–1825

    Article  CAS  PubMed  Google Scholar 

  46. Aglietti RA, Dueber EC (2017) Recent insights into the Molecular Mechanisms underlying pyroptosis and Gasdermin Family Functions. Trends Immunol 38(4):261–271

    Article  CAS  PubMed  Google Scholar 

  47. Kepp O, Galluzzi L, Zitvogel L, Kroemer G (2010) Pyroptosis - a cell death modality of its kind? Eur J Immunol 40(3):627–630

    Article  CAS  PubMed  Google Scholar 

  48. Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19(8):477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD, Latz E (2018) Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 17(8):588–606

    Article  CAS  PubMed  Google Scholar 

  50. Wang CY, Guo XC, Zhang JP (2015) [Research advances in NLRP3 inflammasome-related Regulatory Mechanisms]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 37(5):618–622

    CAS  PubMed  Google Scholar 

  51. Sharma BR, Kanneganti TD (2021) NLRP3 inflammasome in cancer and metabolic diseases. Nat Immunol 22(5):550–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Winkler S, Rosen-Wolff A (2015) Caspase-1: an integral regulator of innate immunity. Semin Immunopathol 37(4):419–427

    Article  CAS  PubMed  Google Scholar 

  53. Gan J, Huang M, Lan G, Liu L, Xu F (2020) High glucose induces the loss of Retinal Pericytes partly via NLRP3-Caspase-1-GSDMD-Mediated pyroptosis. Biomed Res Int 2020:4510628

    Article  PubMed  PubMed Central  Google Scholar 

  54. Qiao L, Wu X, Zhang J, Liu L, Sui X, Zhang R, Liu W, Shen F, Sun Y (2019) Xi, alpha-NETA induces pyroptosis of epithelial ovarian cancer cells through the GSDMD/caspase-4 pathway. FASEB J 33(11):12760–12767

    Article  CAS  PubMed  Google Scholar 

  55. Baker PJ, Boucher D, Bierschenk D, Tebartz C, Whitney PG, D’Silva DB, Tanzer MC, Monteleone M, Robertson AA, Cooper MA, Alvarez-Diaz S, Herold MJ, Bedoui S, Schroder K, Masters SL (2015) NLRP3 inflammasome activation downstream of cytoplasmic LPS recognition by both caspase-4 and caspase-5. Eur J Immunol 45(10):2918–2926

    Article  CAS  PubMed  Google Scholar 

  56. Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, Ciferri C, Dixit VM, Dueber EC (2016) GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci U S A 113(28):7858–7863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Cerretti DP, Kozlosky CJ, Mosley B, Nelson N, Van Ness K, Greenstreet TA, March CJ, Kronheim SR, Druck T, Cannizzaro LA et al (1992) Molecular cloning of the interleukin-1 beta converting enzyme. Science 256(5053):97–100

    Article  CAS  PubMed  Google Scholar 

  58. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F (2014) Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514(7521):187–192

    Article  CAS  PubMed  Google Scholar 

  59. Rogers C, Erkes DA, Nardone A, Aplin AE, Fernandes-Alnemri T, Alnemri ES (2019) Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation. Nat Commun 10(1):1689

    Article  PubMed  PubMed Central  Google Scholar 

  60. Fulda S (2015) Targeting apoptosis for anticancer therapy. Semin Cancer Biol 31:84–88

    Article  CAS  PubMed  Google Scholar 

  61. Falcon T, Freitas M, Mello AC, Coutinho L, Alvares-da-Silva MR, Matte U (2018) Analysis of the Cancer Genome Atlas Data reveals Novel putative ncRNAs targets in Hepatocellular Carcinoma. Biomed Res Int 2018:2864120

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kim MS, Lebron C, Nagpal JK, Chae YK, Chang X, Huang Y, Chuang T, Yamashita K, Trink B, Ratovitski EA, Califano JA, Sidransky D (2008) Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer. Biochem Biophys Res Commun 370(1):38–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Ibrahim J, Op de Beeck K, Fransen E, Croes L, Beyens M, Suls A, Vanden Berghe W, Peeters M, Van Camp G (2019) Methylation analysis of Gasdermin E shows great promise as a biomarker for colorectal cancer. Cancer Med 8(5):2133–2145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lage H, Helmbach H, Grottke C, Dietel M, Schadendorf D (2001) DFNA5 (ICERE-1) contributes to acquired etoposide resistance in melanoma cells. FEBS Lett 494(1–2):54–59

    Article  CAS  PubMed  Google Scholar 

  65. Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, Wang Y, Li D, Liu W, Zhang Y, Shen L, Han W, Shen L, Ding J, Shao F (2020) Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368:6494

    Article  Google Scholar 

  66. Hoseini Z, Sepahvand F, Rashidi B, Sahebkar A, Masoudifar A, Mirzaei H (2018) NLRP3 inflammasome: its regulation and involvement in atherosclerosis. J Cell Physiol 233(3):2116–2132

    Article  CAS  PubMed  Google Scholar 

  67. Zhang H, Li L, Liu L (2018) FcgammaRI (CD64) contributes to the severity of immune inflammation through regulating NF-kappaB/NLRP3 inflammasome pathway. Life Sci 207:296–303

    Article  CAS  PubMed  Google Scholar 

  68. So D, Shin HW, Kim J, Lee M, Myeong J, Chun YS, Park JW (2018) Cervical cancer is addicted to SIRT1 disarming the AIM2 antiviral defense. Oncogene 37(38):5191–5204

    Article  CAS  PubMed  Google Scholar 

  69. Song Y, Wu X, Xu Y, Zhu J, Li J, Zou Z, Chen L, Zhang B, Hua C, Rui H, Zheng Q, Zhou Q, Wang Q, Cheng H (2020) HPV E7 inhibits cell pyroptosis by promoting TRIM21-mediated degradation and ubiquitination of the IFI16 inflammasome. Int J Biol Sci 16(15):2924–2937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Web of Science™ (WOS) team for using their data.

Funding

This study was supported in part by the Shanghai Municipal Health Commission (No.201940306); Henan medical science and technology research project (No. 201602031); Key project of provincial and ministerial co-construction of Henan Medical Science and Technology (No. SBGJ202002031). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conception/design by W Wang, W Sun, Z Huang. Collection and/or assembly of data by Y Liu, H Xu S, Wang, S Xian, P Yan, J Zhang, H Guo, H Qin, J Lian, X Han, J Zhang, R Guo, J Zhang. Data analysis and interpretation by W Sun, W Wang, Y Liu, H Xu. Manuscript writing by C Wei, W Sun, Y Liu, H Xu. Final approval of manuscript by S Wang, S Xian, P Yan, J Zhang, H Guo, H Qin, J Lian, X Han, J Zhang, R Guo, J Zhang, Z Huang.

Corresponding authors

Correspondence to Yao Liu, Ruixia Guo, Jie Zhang or Zongqiang Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethics approval and consent to participate

The study was approved by the Ethics Committee of the First Affiliated Hospital of Zhengzhou University.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Sun, W., Xu, H. et al. Bibliometric analysis and mini-review of global research on pyroptosis in the field of cancer. Apoptosis 28, 1076–1089 (2023). https://doi.org/10.1007/s10495-023-01821-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01821-9

Keywords

Navigation