Skip to main content
Log in

Insights into the functions of the death associated protein kinases from C. elegans and other invertebrates

  • The Universe of DAPK
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The death associated protein kinases (DAPK) are a phylogenetically widespread family of calcium-regulated serine/threonine kinases, initially identified from their roles in apoptosis. Subsequent studies, principally in vertebrate cells or models, have elucidated the functions of the DAPK family in autophagy and tumor suppression. Invertebrate genetic model organisms such as Drosophila and C. elegans have revealed additional functions for DAPK and related kinases. In the nematode C. elegans, the sole DAPK family member DAPK-1 positively regulates starvation-induced autophagy. Genetic analysis in C. elegans has revealed that DAPK-1 also acts as a negative regulator of epithelial innate immune responses in the epidermis. This negative regulatory role for DAPK in innate immunity may be analogous to the roles of mammalian DAPK in inflammatory responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A (1995) Identification of a novel serine/threonine kinase and a novel 15-kD protein as potential mediators of the gamma interferon-induced cell death. Genes Dev 9:15–30

    Article  CAS  PubMed  Google Scholar 

  2. Inbal B, Bialik S, Sabanay I, Shani G, Kimchi A (2002) DAP kinase and DRP-1 mediate membrane blebbing and the formation of autophagic vesicles during programmed cell death. J Cell Biol 157:455–468

    Article  CAS  PubMed  Google Scholar 

  3. Lin Y, Hupp TR, Stevens C (2010) Death-associated protein kinase (DAPK) and signal transduction: additional roles beyond cell death. FEBS J 277:48–57

    Article  CAS  PubMed  Google Scholar 

  4. Harrison B, Kraus M, Burch L et al (2008) DAPK-1 binding to a linear peptide motif in MAP1B stimulates autophagy and membrane blebbing. J Biol Chem 283:9999–10014

    Article  CAS  PubMed  Google Scholar 

  5. Gozuacik D, Kimchi A (2006) DAPk protein family and cancer. Autophagy 2:74–79

    CAS  PubMed  Google Scholar 

  6. Bialik S, Kimchi A (2012) Biochemical and functional characterization of the ROC domain of DAPK establishes a new paradigm of GTP regulation in ROCO proteins. Biochem Soc Trans 40:1052–1057

    Article  CAS  PubMed  Google Scholar 

  7. Temmerman K, Simon B, Wilmanns M (2013) Structural and functional diversity in the activity and regulation of DAPK-related protein kinases. FEBS J 280(21):5533–5550

    Article  CAS  PubMed  Google Scholar 

  8. Murata-Hori M, Fukuta Y, Ueda K, Iwasaki T, Hosoya H (2001) HeLa ZIP kinase induces diphosphorylation of myosin II regulatory light chain and reorganization of actin filaments in nonmuscle cells. Oncogene 20:8175–8183

    Article  CAS  PubMed  Google Scholar 

  9. Sanjo H, Kawai T, Akira S (1998) DRAKs, novel serine/threonine kinases related to death-associated protein kinase that trigger apoptosis. J Biol Chem 273:29066–29071

    Article  CAS  PubMed  Google Scholar 

  10. Tong A, Lynn G, Ngo V et al (2009) Negative regulation of Caenorhabditis elegans epidermal damage responses by death-associated protein kinase. Proc Natl Acad Sci USA 106:1457–1461

    Article  CAS  PubMed  Google Scholar 

  11. Neubueser D, Hipfner DR (2010) Overlapping roles of Drosophila Drak and Rok kinases in epithelial tissue morphogenesis. Mol Biol Cell 21:2869–2879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. You YJ, Kim J, Cobb M, Avery L (2006) Starvation activates MAP kinase through the muscarinic acetylcholine pathway in Caenorhabditis elegans pharynx. Cell Metab 3:237–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Kang C, You YJ, Avery L (2007) Dual roles of autophagy in the survival of Caenorhabditis elegans during starvation. Genes Dev 21:2161–2171

    Article  CAS  PubMed  Google Scholar 

  14. Gozuacik D, Bialik S, Raveh T et al (2008) DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ 15:1875–1886

    Article  CAS  PubMed  Google Scholar 

  15. Pujol N, Cypowyj S, Ziegler K et al (2008) Distinct innate immune responses to infection and wounding in the C. elegans epidermis. Curr Biol 18:481–489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Robertson F, Pinal N, Fichelson P, Pichaud F (2012) Atonal and EGFR signalling orchestrate rok- and Drak-dependent adherens junction remodelling during ommatidia morphogenesis. Development (Cambridge, England) 139:3432–3441

    Article  CAS  Google Scholar 

  17. Cohen O, Feinstein E, Kimchi A (1997) DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J 16:998–1008

    Article  CAS  PubMed  Google Scholar 

  18. Bialik S, Bresnick AR, Kimchi A (2004) DAP-kinase-mediated morphological changes are localization dependent and involve myosin-II phosphorylation. Cell Death Differ 11:631–644

    CAS  PubMed  Google Scholar 

  19. Ewbank JJ (2002) Tackling both sides of the host–pathogen equation with Caenorhabditis elegans. Microbes Infect/Institut Pasteur 4:247–256

    Article  Google Scholar 

  20. Chisholm AD, Xu S (2012) The epidermis as a model skin. II: differentiation and physiological roles. Wiley Interdiscip Rev Dev Biol 1:879–902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Xu S, Chisholm AD (2011) A Galphaq-Ca(2)(+) signaling pathway promotes actin-mediated epidermal wound closure in C. elegans. Curr Biol 21:1960–1967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Kuo JC, Wang WJ, Yao CC, Wu PR, Chen RH (2006) The tumor suppressor DAPK inhibits cell motility by blocking the integrin-mediated polarity pathway. J Cell Biol 172:619–631

    Article  CAS  PubMed  Google Scholar 

  23. Couillault C, Pujol N, Reboul J et al (2004) TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol 5:488–494

    Article  CAS  PubMed  Google Scholar 

  24. Pujol N, Zugasti O, Wong D et al (2008) Anti-fungal innate immunity in C. elegans is enhanced by evolutionary diversification of antimicrobial peptides. PLoS Pathog 4:e1000105

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ziegler K, Kurz CL, Cypowyj S et al (2009) Antifungal innate immunity in C. elegans: PKCdelta links G protein signaling and a conserved p38 MAPK cascade. Cell Host Microbe 5:341–352

    Article  CAS  PubMed  Google Scholar 

  26. Van Epps H, Dai Y, Qi Y, Goncharov A, Jin Y (2010) Nuclear pre-mRNA 3′-end processing regulates synapse and axon development in C. elegans. Development (Cambridge, England) 137:2237–2250

    Article  Google Scholar 

  27. Mukhopadhyay R, Ray PS, Arif A, Brady AK, Kinter M, Fox PL (2008) DAPK-ZIPK-L13a axis constitutes a negative-feedback module regulating inflammatory gene expression. Mol Cell 32:371–382

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Chuang YT, Fang LW, Lin-Feng MH, Chen RH, Lai MZ (2008) The tumor suppressor death-associated protein kinase targets to TCR-stimulated NF-kappa B activation. J Immunol 180:3238–3249

    CAS  PubMed  Google Scholar 

  29. Nakav S, Cohen S, Feigelson SW et al (2012) Tumor suppressor death-associated protein kinase attenuates inflammatory responses in the lung. Am J Respir Cell Mol Biol 46:313–322

    Article  CAS  PubMed  Google Scholar 

  30. Chakilam S, Gandesiri M, Rau TT et al (2013) Death-associated protein kinase controls STAT3 activity in intestinal epithelial cells. Am J Pathol 182:1005–1020

    Article  CAS  PubMed  Google Scholar 

  31. Dierking K, Polanowska J, Omi S et al (2011) Unusual regulation of a STAT protein by an SLC6 family transporter in C. elegans epidermal innate immunity. Cell Host Microbe 9:425–435

    Article  CAS  PubMed  Google Scholar 

  32. Wu PR, Tsai PI, Chen GC et al (2011) DAPK activates MARK1/2 to regulate microtubule assembly, neuronal differentiation, and tau toxicity. Cell Death Differ 18:1507–1520

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M.C. is supported by the UCSD Cellular and Molecular Genetics Training Grant (NIH T32 GM007240). Work in our laboratory on DAPK is supported by NIH R01 GM054657 to A.D.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Chisholm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuang, M., Chisholm, A.D. Insights into the functions of the death associated protein kinases from C. elegans and other invertebrates. Apoptosis 19, 392–397 (2014). https://doi.org/10.1007/s10495-013-0943-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-013-0943-2

Keywords

Navigation