Skip to main content
Log in

Mechanical model of organ of Corti

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

According to the vibration characteristics of the organ of Corti (OC), seven hypotheses are made to simplify the structure of the model, and a mechanical OC model is established. Using the variational principle, a displacement analytical expression is solved under a certain pressure. The results are in good agreement with experimental data, showing the validity of the formula. Combined with the damage caused by noise in clinic, it is found that the hardening of outer hair cells and outer stereocilia can lead to loss of hearing and generation of threshold shift. In addition, the results show that high frequency resonance occurs at the bottom of the basilar membrane (BM), and low frequency resonance occurs at the top of the BM. This confirms the frequency selective characteristics of the BM. Further, using this formula can avoid interference of the envi- ronment and the technical level of the test personnel, and can evaluate performance of the OC objectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Holley, M. C. and Ashmore, J. F. A cytoskeletal spring in cochlear outer hair cells. nature, 335, 635–637 (1988)

    Article  Google Scholar 

  2. Tolomeo, J. A., Steele, C. R., and Holley, M. C. Mechanical properties of the lateral cortex of mammalian auditory outer hair cells. Biophysical Journal, 71, 421–429 (1996)

    Article  Google Scholar 

  3. Chan, E., Suneson, A., and Ulfendahl, M. Acoustic trauma causes reversible stiffness changes in auditory sensory cells. Neuroscience, 83, 961–968 (1998)

    Article  Google Scholar 

  4. Hallworth, R. Passive compliance and active force generation in the guinea pig outer hair cell. Journal of Neurophysiology, 74, 2319–2328 (1995)

    Google Scholar 

  5. Zwislocki, J. J. and Cefaratti, L. K. Tectorial membran II: stiffness measurements in vivo. Hearing Research, 42, 211–227 (1989)

    Article  Google Scholar 

  6. Edge, R. M., Evans, B. N., Pearce, M., Richter, C. P., Hu, X., and Dallos, P. Morphology of the unfixed cochlea. Hearing Research, 124, 1–16 (1998)

    Article  Google Scholar 

  7. Naidu, R. C. and Mountain, D. C. Longitudinal coupling in the basilar membrane. Journal of the Association for Research in Otolaryngology, 2, 257–267 (2001)

    Article  Google Scholar 

  8. Brundin, L., Flock, A., and Canlon, B. Sound-induced motility of isolated cochlear outer hair cells is frequency-specific. Nature, 342, 814–816 (1989)

    Article  Google Scholar 

  9. De Boer, E. On active and passive cochlear models: towards ageneralized analysis. Journal of the Acoustical Society of America, 73, 574–576 (1983)

    Article  Google Scholar 

  10. Diependaal, R. J. and Viergever, M. A. Nonlinear and active two-dimensional cochlear models: time-domain solution. Journal of the Acoustical Society of America, 85, 803–812 (1989)

    Article  MathSciNet  Google Scholar 

  11. Kanis, L. J. and de Boer, E. Comparing frequency-domain with time-domain solutions for a locally active nonlinear model of the cochlea. Journal of the Acoustical Society of America, 100, 2543–2546 (1996)

    Article  Google Scholar 

  12. Kanis, L. J. and de Boer, E. Frequency dependence of acoustic distortion products in a locally active model of the cochlea. Journal of the Acoustical Society of America, 101, 1527–1531 (1997)

    Article  Google Scholar 

  13. Zweig, G. Finding the impedance of the organ of Corti. Journal of the Acoustical Society of America, 89, 1229–1254 (1991)

    Article  Google Scholar 

  14. Allen, J. B. and Fahey, P. F. A second cochlear-frequency map that correlates distortion product and neural tuning measurements. Journal of the Acoustical Society of America, 94, 809–816 (1993)

    Article  Google Scholar 

  15. Lim, K. M. and Steele, C. R. A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method. Hearing Research, 170, 190–205 (2002)

    Article  Google Scholar 

  16. Yoon, Y., Puria, S., and Steele, C. R. Intracochlear pressure and organ of Corti impedance from a linear active three-dimensional model. Oto-Rhino-Laryngology, 68, 365–372 (2006)

    Google Scholar 

  17. Liberman, M. C. The cochlear frequency map for the cat: labeling auditory-nerve fibers of known characteristic frequency. Journal of the Acoustical Society of America, 72, 1441–1449 (1982)

    Article  Google Scholar 

  18. Muller, M. The cochlear place-frequency map of the adult and developing mongolian gerbil. Hearing Research, 94, 148–156 (1996)

    Article  Google Scholar 

  19. Greenwood, D. D. Critical bandwidth and the frequency coordinates of the basilar membrane. Journal of the Acoustical Society of America, 33, 1344–1356 (1961)

    Article  Google Scholar 

  20. Greenwood, D. D. Comparing octaves, frequency ranges, and cochlear-map curvature across species. Hearing Research, 94, 157–162 (1996)

    Article  Google Scholar 

  21. Masayoshi, A. and Hiroshi, W. Prediction of the characteristics of two types of pressure waves in the cochlea: theoretical considerations. Journal of the Acoustical Society of America, 116, 417–425 (2004)

    Article  Google Scholar 

  22. Robles, L. and Ruggero, M. A. Mechanics of the mammalian cochlea. Physiological Reviews, 81, 1305–1352 (2001)

    Google Scholar 

  23. Olson, E. S. Direct measurement of intra-cochlear pressure waves. nature, 402, 526–529 (1999)

    Article  Google Scholar 

  24. Yang, L., Hua, C., Dai, P. D., Yan, X. Q., Zhang, T. Y., Ding, G. H., Wang, K. Q., and Wang, Z. M. Two dimensional FEM analysis for dynamic behavior of the organ of Corti (in Chinese). Journal of Vibration and Shock, 27, 108–111 (2008)

    Google Scholar 

  25. Zagadou, B. F., Barbone, P. E., and Mountain, D. C. Elastic properties of organ of Corti tissues from point-stiffness measurement and inverse analysis. Journal of Biomechanics, 47, 1270–1277 (2014)

    Article  Google Scholar 

  26. Cai, H., Shoelson, B., and Chadwick, R. S. Evidence of tectorial membrane radial motion in a propagating mode of a complex cochlear model. Proceedings of the National Academy of Sciences, 101, 6243–6248 (2004)

    Article  Google Scholar 

  27. Wang, Z. L., Wang, X. L., Hu, Y. J., Shi, H., and Cheng, H. M. FEM simulation of sound transmission based on integrated model of middle ear and cochlea. Chinese Journal of Biomedical Engineering, 30, 60–66 (2011)

    Google Scholar 

  28. Nakajima, H. H., Ravicz, M. E., Rosowski, J. J., Peake, W. T., and Merchant, S. N. Experimental and clinical studies of malleus fixation. The Laryngoscope, 115, 147–154 (2005)

    Article  Google Scholar 

  29. Dai, C., Cheng, T., Wood, M. W., and Gan, R. Z. Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: experiment and modeling. Hearing Research, 230, 24–33 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjuan Yao.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 11272200 and 11572186)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yao, W. & Liu, S. Mechanical model of organ of Corti. Appl. Math. Mech.-Engl. Ed. 38, 867–876 (2017). https://doi.org/10.1007/s10483-017-2203-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-017-2203-8

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation