Skip to main content
Log in

Applying a New Trigonometric Radial Basis Function Approximation in Solving Nonlinear Vibration Problems

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This study introduces a semi-analytical method called the New Trigonometric Radial Basis Function (NTRBF) approach to address the challenges of solving highly nonlinear differential equations in vibration problems. The method uses a particular trigonometric function to deal with differential equations in an extraordinary and original approach. This study conducted a comparative analysis of the proposed method against four different approaches, including the Global Residue Harmonic Balance Method for addressing circular sector oscillator problems, the Continuous Piecewise Linearization Method for solving highly nonlinear differential equation of a tapered beam, the Differential Transform Method for solving centrifugal rotating frame motion, and Akbari–Ganji’s Method to address Duffing-type nonlinear oscillator. These problems were solved under different conditions, and the resulting plots and tables represent both cumulative and maximum errors between the NTRBF and other methods. The numerical 4th-order Runge–Kutta method was used as a benchmark for accuracy in this comparative analysis. The outcomes prove the high accuracy and efficiency of the innovative technique and its unique capability in solving various nonlinear vibration problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Anjum, N., He, J.H.: Laplace transform: Making the variational iteration method easier. Appl. Math. Lett. 92, 134–138 (2019). https://doi.org/10.1016/j.aml.2019.01.016

    Article  MathSciNet  Google Scholar 

  2. Liu, C.S., Chang, C.W.: An energy regularization of the MQ-RBF method for solving the Cauchy problems of diffusion-convection-reaction equations. Commun. Nonlinear Sci. Numer. Simul. 67, 375–390 (2019). https://doi.org/10.1016/j.cnsns.2018.07.002

    Article  MathSciNet  Google Scholar 

  3. Ebrahimijahan, A., Dehghan, M., Abbaszadeh, M.: Simulation of plane elastostatic equations of anisotropic functionally graded materials by integrated radial basis function based on finite difference approach. Eng. Anal. Bound. Elem. 134, 553–570 (2022). https://doi.org/10.1016/J.ENGANABOUND.2021.10.011

    Article  MathSciNet  Google Scholar 

  4. Raja, M.A.Z., Abbas, S., Syam, M.I., Wazwaz, A.M.: Design of neuro-evolutionary model for solving nonlinear singularly perturbed boundary value problems. Appl. Soft Comput. J. 62, 373–394 (2018). https://doi.org/10.1016/j.asoc.2017.11.002

    Article  Google Scholar 

  5. Kazemi, S.M.M., Dehghan, M., Foroush Bastani, A.: On a new family of radial basis functions: mathematical analysis and applications to option pricing. J. Comput. Appl. Math. 328, 75–100 (2018). https://doi.org/10.1016/j.cam.2017.06.012

    Article  MathSciNet  Google Scholar 

  6. Oruç, Ö.: A radial basis function finite difference (RBF-FD) method for numerical simulation of interaction of high and low frequency waves: Zakharov-Rubenchik equations. Appl. Math. Comput. 394, 125787 (2021). https://doi.org/10.1016/J.AMC.2020.125787

    Article  MathSciNet  Google Scholar 

  7. Liu, C.S., Chen, W., Fu, Z.: A multiple-scale MQ-RBF for solving the inverse Cauchy problems in arbitrary plane domain. Eng. Anal. Bound. Elem. 68, 11–16 (2016). https://doi.org/10.1016/j.enganabound.2016.02.011

    Article  MathSciNet  Google Scholar 

  8. Sun, J., Yi, H.L., Xie, M., Tan, H.P.: New implementation of local RBF meshless scheme for radiative heat transfer in participating media. Int. J. Heat Mass Transf. 95, 440–452 (2016). https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.002

    Article  Google Scholar 

  9. Jankowska, M.A., Karageorghis, A., Chen, C.S.: Improved Kansa RBF method for the solution of nonlinear boundary value problems. Eng. Anal. Bound. Elem. 87, 173–183 (2018). https://doi.org/10.1016/j.enganabound.2017.11.012

    Article  MathSciNet  Google Scholar 

  10. Shankar, V., Narayan, A., Kirby, R.M.: RBF-LOI: augmenting radial basis functions (RBFs) with least orthogonal interpolation (LOI) for solving PDEs on surfaces. J. Comput. Phys. 373, 722–735 (2018). https://doi.org/10.1016/j.jcp.2018.07.015

    Article  MathSciNet  Google Scholar 

  11. Li, N., Su, H., Gui, D., Feng, X.: Multiquadric RBF-FD method for the convection-dominated diffusion problems base on Shishkin nodes. Int. J. Heat Mass Transf. 118, 734–745 (2018). https://doi.org/10.1016/j.ijheatmasstransfer.2017.11.011

    Article  Google Scholar 

  12. Zhang, Y.: An accurate and stable RBF method for solving partial differential equations. Appl. Math. Lett. 97, 93–98 (2019). https://doi.org/10.1016/j.aml.2019.05.021

    Article  MathSciNet  Google Scholar 

  13. Bhardwaj, A., Kumar, A.: Numerical solution of time fractional tricomi-type equation by an RBF based meshless method. Eng. Anal. Bound. Elem. 118, 96–107 (2020). https://doi.org/10.1016/j.enganabound.2020.06.002

    Article  MathSciNet  Google Scholar 

  14. Reutskiy, S., Lin, J.: A RBF-based technique for 3D convection–diffusion–reaction problems in an anisotropic inhomogeneous medium. Comput. Math. Appl. 79, 1875–1888 (2020). https://doi.org/10.1016/j.camwa.2019.10.010

    Article  MathSciNet  Google Scholar 

  15. Aràndiga, F., Donat, R., Romani, L., Rossini, M.: On the reconstruction of discontinuous functions using multiquadric RBF–WENO local interpolation techniques. Math. Comput. Simul 176, 4–24 (2020). https://doi.org/10.1016/j.matcom.2020.01.018

    Article  MathSciNet  Google Scholar 

  16. Ullah, M.Z.: An RBF-FD sparse scheme to simulate high-dimensional Black-Scholes partial differential equations. Comput. Math. Appl. 79, 426–439 (2020). https://doi.org/10.1016/j.camwa.2019.07.011

    Article  MathSciNet  Google Scholar 

  17. Qiao, H., Cheng, A.: A fast finite difference/RBF meshless approach for time fractional convection-diffusion equation with non-smooth solution. Eng. Anal. Bound. Elem. 125, 280–289 (2021). https://doi.org/10.1016/j.enganabound.2021.01.011

    Article  MathSciNet  Google Scholar 

  18. Mai-Duy, N., Strunin, D.: New approximations for one-dimensional 3-point and two-dimensional 5-point compact integrated RBF stencils. Eng. Anal. Bound. Elem. 125, 12–22 (2021). https://doi.org/10.1016/j.enganabound.2021.01.001

    Article  MathSciNet  Google Scholar 

  19. Ma, Z., Li, X., Chen, C.S.: Ghost point method using RBFs and polynomial basis functions. Appl. Math. Lett. 111, 106618 (2021). https://doi.org/10.1016/j.aml.2020.106618

    Article  MathSciNet  Google Scholar 

  20. Zeng, Y., Zhu, Y.: Implicit surface reconstruction based on a new interpolation/approximation radial basis function. Comput. Aided Geom. Des. 92, 102062 (2022). https://doi.org/10.1016/j.cagd.2021.102062

    Article  MathSciNet  Google Scholar 

  21. Ang, W.T.: A boundary element and radial basis function method for the Cattaneo-Vernotte equation in anisotropic media with spatially varying and temperature dependent properties. Partial Differ. Equ. Appl. Math. 4, 100138 (2021). https://doi.org/10.1016/J.PADIFF.2021.100138

    Article  Google Scholar 

  22. Wu, H., Han, Y., Geng, Z., Fan, J., Xu, W.: Production capacity assessment and carbon reduction of industrial processes based on novel radial basis function integrating multi-dimensional scaling. Sustain. Energy Technol. Assessments. 49, 101734 (2022). https://doi.org/10.1016/j.seta.2021.101734

    Article  Google Scholar 

  23. Uddin, M., Haq, S.: RBFs approximation method for time fractional partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 16, 4208–4214 (2011). https://doi.org/10.1016/j.cnsns.2011.03.021

    Article  MathSciNet  Google Scholar 

  24. Kumar, S., Piret, C.: Numerical solution of space-time fractional PDEs using RBF-QR and Chebyshev polynomials. Appl. Numer. Math. 143, 300–315 (2019). https://doi.org/10.1016/j.apnum.2019.04.012

    Article  MathSciNet  Google Scholar 

  25. Karageorghis, A., Tappoura, D., Chen, C.S.: The Kansa RBF method with auxiliary boundary centres for fourth order boundary value problems. Math. Comput. Simul 181, 581–597 (2021). https://doi.org/10.1016/j.matcom.2020.10.010

    Article  MathSciNet  Google Scholar 

  26. Zhang, X., Yao, L., Liu, J.: Numerical study of Fisher’s equation by the RBF-FD method. Appl. Math. Lett. 120, 107195 (2021). https://doi.org/10.1016/j.aml.2021.107195

    Article  MathSciNet  Google Scholar 

  27. Tominec, I., Breznik, E.: An unfitted RBF-FD method in a least-squares setting for elliptic PDEs on complex geometries. J. Comput. Phys. 436, 110283 (2021). https://doi.org/10.1016/j.jcp.2021.110283

    Article  MathSciNet  Google Scholar 

  28. Zhao, W., Hon, Y.C., Stoll, M.: Numerical simulations of nonlocal phase-field and hyperbolic nonlocal phase-field models via localized radial basis functions-based pseudo-spectral method (LRBF-PSM). Appl. Math. Comput. 337, 514–534 (2018). https://doi.org/10.1016/J.AMC.2018.05.057

    Article  MathSciNet  Google Scholar 

  29. Fornberg, B., Larsson, E., Wright, G.: A new class of oscillatory radial basis functions. Comput. Math. Appl. 51, 1209–1222 (2006). https://doi.org/10.1016/j.camwa.2006.04.004

    Article  MathSciNet  Google Scholar 

  30. Buhmann, M.D., Levesley, J.: Radial basis functions: theory and implementations. Math. Comput. 73, 1578–1581 (2004). https://doi.org/10.1017/CBO9780511543241

    Article  Google Scholar 

  31. Lu, J., Ma, L., Sun, Y.: Analysis of the nonlinear differential equation of the circular sector oscillator by the global residue harmonic balance method. Results Phys. 19, 103403 (2020). https://doi.org/10.1016/j.rinp.2020.103403

    Article  Google Scholar 

  32. Big-Alabo, A., Ossia, C.V., Ekpruke, E.O., Ogbonnia, D.C.: Large-amplitude vibration analysis of a strong nonlinear tapered beam using continuous piecewise linearization method. J. King Saud Univ. Eng. Sci. (2020). https://doi.org/10.1016/j.jksues.2020.11.005

    Article  Google Scholar 

  33. Ghafoori, S., Motevalli, M., Nejad, M.G., Shakeri, F., Ganji, D.D., Jalaal, M.: Efficiency of differential transformation method for nonlinear oscillation: Comparison with HPM and VIM. Curr. Appl. Phys. 11, 965–971 (2011). https://doi.org/10.1016/j.cap.2010.12.018

    Article  Google Scholar 

  34. Mirgolbabaee, H., Ledari, S.T., Ganji, D.D.: New approach method for solving Duffing-type nonlinear oscillator. Alexandria Eng. J. 55, 1695–1702 (2016). https://doi.org/10.1016/j.aej.2016.03.007

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

HT proposed the novel method, analyzed the results, and worked on the code, and he created proper figures for the results and wrote the manuscript. MFN worked on the code. DDG supervised the whole process.

Corresponding author

Correspondence to Hossein Talebirostami.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebirostami, H., Najafabadi, M.F. & Ganji, D.D. Applying a New Trigonometric Radial Basis Function Approximation in Solving Nonlinear Vibration Problems. Int. J. Appl. Comput. Math 10, 93 (2024). https://doi.org/10.1007/s40819-024-01730-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-024-01730-8

Keywords

Navigation