Skip to main content
Log in

Lysinibacillus capsici sp. nov, isolated from the rhizosphere of a pepper plant

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A strain of a Gram-positive, strictly aerobic, motile, rod-shaped, endospore forming bacterium was originally isolated from rhizospheric soil of a pepper plant when screening and bioprospecting for plant beneficial microorganisms. Phylogenetic analysis of the 16S rRNA gene sequences indicated that this strain, PB300T, is closely related to Lysinibacillus macroides DMS 54T (99.6%) and Lysinibacillus xylanilyticus DSM 23493T (99.4%). In phenotypic characterisation, the novel strain was found to grow between 15 and 40 °C and tolerate up to 10% (w/v) NaCl. Furthermore, the strain was found to grow in media with pH 5 to 10 (optimal growth at pH 7.0). The predominant cellular fatty acids were observed to be iso-C15 : 0 (56.6 %), anteiso-C15 : 0 (14.6%), C16 :1ω7C alcohol (9.3%) and C16 : 0 (7.1%). The cell wall peptidoglycan contains lysine-aspartic acid, as in its close relatives. A draft genome was completed and the DNA G + C content was determined to be 37.5% (mol content). A phylogenomic analysis of the core genome of the new strain and 5 closely related type strains of the genus Lysinibacillus revealed that this strain formed a distinct monophyletic clade with the nearest neighbour being Lysinibacillus boronitolerans. DNA–DNA relatedness studies using in silico DNA–DNA hybridizations (DDH) showed relationships for the new strain were below the species threshold of 70%. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that this strain represents a novel species within the genus Lysinibacillus, for which the name Lysinibacillus capsici sp. nov. is proposed, with type strain PB300T (= NRRL B-65515T, = CCUG 72241T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to thank Heather Walker and Miho Yoshioka for expert technical assistance. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture. The mention of firm names or trade products does not imply that they are endorsed or recommended by the USDA over other firms or similar products not mentioned. USDA is an equal opportunity provider and employer.

Funding

This work was supported by U.S. Department of Agriculture Project 5010-22000-011-00-D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher A. Dunlap.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (PDF 529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkett-Cadena, M., Sastoque, L., Cadena, J. et al. Lysinibacillus capsici sp. nov, isolated from the rhizosphere of a pepper plant. Antonie van Leeuwenhoek 112, 1161–1167 (2019). https://doi.org/10.1007/s10482-019-01248-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-019-01248-w

Keywords

Navigation