Skip to main content
Log in

Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

A total of 40 endophytic bacterial isolates obtained from banana tree roots were characterized for their biotechnological potential for promoting banana tree growth. All isolates had at least one positive feature. Twenty isolates were likely diazotrophs and formed pellicles in nitrogen-free culture medium, and 67% of these isolates belonged to the genus Bacillus sp. The isolates EB-04, EB-169, EB-64, and EB-144 had N fixation abilities as measured by the Kjeldahl method and by an acetylene reduction activity assay. Among the 40 isolates, 37.5% were capable of solubilizing inorganic phosphate and the isolates EB-47 and EB-64 showed the highest solubilization capacity. The isolate EB-53 (Lysinibacillus sp.) had a high solubilization index, whereas 73% of the isolates had low solubilization indices. The synthesis of indole-3-acetic acid (IAA) in the presence of L-tryptophan was detected in 40% of the isolates. The isolate EB-40 (Bacillus sp.) produced the highest amount of IAA (47.88 μg/ml) in medium supplemented with L-tryptophan and was able to synthesize IAA in the absence of L-tryptophan. The isolates EB-126 (Bacillus subtilis) and EB-47 (Bacillus sp.) were able to simultaneously fix nitrogen, solubilize phosphate and produce IAA in vitro. The results of this study demonstrated that the isolates analyzed here had diverse abilities and all have the potential to be used as growth-promoting microbial inoculants for banana trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araujo, F.F., Guaberto, L.M., and Silva, I.F. 2012. Bioprospection of plant growth promoter rhizobacteria in Brachiaria brizantha. Rev. Bras. Zootec. 41, 521–527.

    Article  Google Scholar 

  • Araújo, J.M., Silva, A.C., and Azevedo, J.L. 2000. Isolation of endophytic actinomycetes from roots and leaves of maize (Zea mays L.). Braz. Arch. Biol. Technol. 43, 447–451.

    Article  Google Scholar 

  • Baldani, J.I. and Baldani, V.L.D. 2005. History on the biological nitrogen fixation research in graminaceous plants: special emphasis on the Brazilian experience. An. Acad. Bras. Cienc. 77, 549–579.

    Article  CAS  PubMed  Google Scholar 

  • Baldotto, L.E.B. 2010. Selection of growth-promoting bacteria for pineapple ‘Vitória’ during acclimatization. Rev. Bras. Cienc. Solo 34, 349–360.

    Article  CAS  Google Scholar 

  • Baig, K.S., Arshad, M., Shaharoona, B., Khalid, A., and Ahmed, I. 2011. Comparative effectiveness of Bacillus spp. possessing either dual or single growth-promoting traits for improving phosphorus uptake, growth yield of wheat (Triticum aestivum L.). Arch. Microbiol. 191, 415–424.

    Google Scholar 

  • Barea, J.M., Pozo, R.A., and Aguilar, C.A. 2005. Microbial cooperation in the rhizosphere. J. Exp. Bot. 56, 1761–1778.

    Article  CAS  PubMed  Google Scholar 

  • Barroso, C.B. and Oliveira, L.A. 2001. Calcium-phosphate solubilizing bacteria occurrence on the roots of Brazilian amazonia plants. Rev. Bras. de Cienc. Solo 25, 575–581.

    CAS  Google Scholar 

  • Berraqueiro, F.R., Baya, A.M., and Cormenzana, A.R. 1976. Establecimiento de índices para el estudio de la solubilizacion de fosfatos por bacterias del suelo. ARS Pharm. 17, 399–406.

    Google Scholar 

  • Braga, J.M. and Defelipo, B.V. 1974. Determina..o espectrofotométrica de fósforo em extratos de solos e plantas. Rev. Ceres. 21, 73–85.

    CAS  Google Scholar 

  • Bremner, J.M. 1965. Total nitrogen: macro-Kjeldahl method to include nitrate. p. 1164. In Black, C.A. (ed). Methods of soil analysis. Part 2. Chemical and microbiological properties. Agron. Monogr., 9. ASA, Madison, USA.

    Google Scholar 

  • Cassán, F., Perrig, D., Sgroy, V., Masciarelli, O., Penna, C., and Luna, V. 2009. Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur. J. Soil Biol. 45, 28–35.

    Article  Google Scholar 

  • Cavalcante, V.A. and Döbereiner, J.A. 1988. New acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108, 23–31.

    Article  Google Scholar 

  • Cavalcante, J.J.V., Vargas, C., Nogueira, E.M., Vinagre, F., Schwarcz, K., Baldani, J.I., and Hemerly, A.S. 2007. Members of th ethylene signalling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. J. Exp. Bot. 58, 673–686.

    Article  CAS  PubMed  Google Scholar 

  • Cerigioli, M.M. 2005. D. Sc. Thesis. Universidade Federal de S.o Carlos, S.o Carlos, S.o Paulo, Brazil.

  • Chagas Junior, A.F., Oliveira, L.A., Oliveira, A.N., and Willerding, A.L. 2010. Phosphate solubilizing ability and symbiotic efficiency of isolated rhizobia from Amazonian soils. Acta Sci. 32, 359–366.

    Google Scholar 

  • Cruz, L.M., Souza, E.M., Weber, O.B., Baldani, J.I., Döbereiner, J., and Pedrosa, F.O. 2001. 16S ribosomal DNA characterization of nitrogen-fixing bacteria isolated from banana (Musa spp.) and pineapple (Ananas comosus (L.) Merril). Appl. Environ. Microbiol. 67, 2375–2379.

    Article  CAS  Google Scholar 

  • Cunningham, J.E. and Kuiack, C. 1992. Production of citric and oxalic acids and solubilization of calcium phosphates by Penicillium bilaii. Appl. Environ. Microbiol. 58, 1451–1458.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dobbelaere, S., Vandeleyden, J., and Okon, Y. 2003. Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22, 107–149.

    Article  CAS  Google Scholar 

  • Döbereiner, J., Baldani, V.L.D., and Baldani, J.I. 1995. Como isolar e identificar bactérias diazotróficas de plantas n.o-leguminosas. Embrapa/CNPAB, Itaguaí, S.o Paulo, BRA.

    Google Scholar 

  • Ferreira, D.F. 2008. SISVAR: um programa para análises e ensino de estatística. Rev. Symp. 6, 36–41.

    Google Scholar 

  • Fiovaranço, J.C. 2003. The Banana World Market: production, trade and Brazilian participation. Inf. Econ. 33, 15–27.

    Google Scholar 

  • Gyaneshwar, P., Kumar, G.N., Parekh, L.J., and Poole, P.S. 2002. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 245, 83–93.

    Article  CAS  Google Scholar 

  • Ikeda, A.C. 2010. M. Sc. Dissertation. Universidade Federal do Paraná, Curitiba, Paraná, Brazil.

  • Inui, R.N. 2009. M. Sc. Dissertation. Universidade Estadual Paulista, Jaboticabal, S.o Paulo, Brazil.

  • Katznelson, H. and Bose, B. 1959. Metabolism activity and phos phate-dissolving capability of bacterial isolates from wheat roots, rhizosphere, and non-rhizosphere soil. Can. J. Microbiol. 5, 79–85.

    Article  CAS  PubMed  Google Scholar 

  • Kucey, R.M.N. 1988. Effects of Penicillium bilagi on the solubility and uptake of P and micronutrients from soil by wheat. Can. J. Soil Sci. 68, 261–270.

    Article  CAS  Google Scholar 

  • Kuss, A.V., Kuss, V.V., Lovato, T., and Flôres, M.L. 2007. Nitrogen fixation and in vitro production of indolacetic acid by endophytic diazotrophic bacteria. Pesqui. Agrop. Bras. 42, 1459–1465.

    Google Scholar 

  • Lee, S., Flores-Encarnación, M., Contreras-Zentella, M., Garcia-Flores, L., Escamilla, J.E., and Kennedy, C. 2004. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome C biogenesis genes. J. Bacteriol. 186, 5384–5391.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lodewyckx, C., Vangronsveld, J., Porteus, F., Moore, E.R.B., Taghavi, S., Mezgeazy, M., and Van der Lelie, D. 2002. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21, 583–606.

    Article  Google Scholar 

  • Luo, S., Xu, T., Chen, L., Chen, J., Rao, C., Xiao, X., Wan, Y., Zeng, G., Long, F., Liu, C., and Liu, Y. 2012. Endophyte-assisted promotion of biomass production and metal-uptake of energy crop sweet sorghum by plant-growth-promotion endophyte Bacillus sp. SLS18. Appl. Microbiol. Biotechnol. 93, 1745–1753.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, L., Caballero-Mellado, J., Orozco, J., and Martínez-Romero, E. 2003. Diazotrophic bacteria associated with banana (Musa spp.). Plant Soil 257, 35–47.

    Article  CAS  Google Scholar 

  • Mia, M.A.B., Shamsuddin, W., Zakaria, W., and Marziah, M. 2007. Associative nitrogen fixation by Azospirillum and Bacillus spp. in bananas. Infomusa 16, 11–15.

    Google Scholar 

  • Mota, F.F., Gomes, E.A., and Seldin, L. 2008. Auxin production and detection of the gene coding for the auxin efflux carrier (AEC) protein in Paenibacillus polimyxa. J. Microbiol. 46, 257–264.

    Article  PubMed  Google Scholar 

  • Nautiyal, C.S. 1999. An effect microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170, 265–270.

    Article  CAS  PubMed  Google Scholar 

  • Perin, L., Silva, M.F., Ferreira, J.S., Canuto, E.L., Medeiros, A.F.A., Olivares, F.L., and Reis, V.M. 2003. Evaluation of the endophytic establishment capacity of strain of Azospirillum and Herbaspirillum bacteria in corn and rice. Agronomia 37, 47–53.

    Google Scholar 

  • Phetcharat, P. and Duangpaeng, A. 2012. Screening of endophytic bacteria from organic rice tissue for indole acetic acid production. Procedia Eng. 32, 177–183.

    Article  Google Scholar 

  • Price, N.S. 1995. Banana morphology — Part I: Roots and rizhomes, pp. 179–189. In Gowen, S. (ed.). Bananas and plantains — 1995. Chapman & Hall, London, UK.

    Chapter  Google Scholar 

  • Ribeiro, C.M. and Cardoso, E.J.B.N. 2012. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil pine (Araucaria angustifolia). Microbiol. Res. 167, 69–78.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339.

    Article  CAS  PubMed  Google Scholar 

  • Rosado, A.S.A., Duarte, G.F., and Mendonça-Hagler, L.C. 1999. Moderna microbiologia do solo: Aplica..o de técnicas de biologia molecular. pp. 429–448. In Siqueira, J.O., Moreira, F.M.S., Lopes, A.S., Guilherme L.R.G., Faquin, V., Frutini Neto, A.E., and Carvalho, J.G. (eds.). Inter-rela..o fertilidade, biologia do solo e nutri..o de plantas — 1999. Lavras, Minas Gerais, Brazil.

    Google Scholar 

  • Santos, I.B., Lima, D.R.M., Barbosa, J.G., Oliveira, J.T.C., Freire, F.J., and Kuklinsky-Sobral, J. 2012. Diazotrophic bacteria associated to roots of sugarcane: inorganic phosphate solubilization and the salinity tolerance. Biosci. J. 28, 142–149.

    Google Scholar 

  • Saravanan, V.S., Madhaiyan, M., and Thagaraju, M. 2007. Solubilization of zinc compouds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere 66, 1794–1798.

    Article  CAS  PubMed  Google Scholar 

  • Sarwar, M. and Kremer, R.J. 1995. Determination of bacterially derived auxins using a microplate method. Lett. Appl. Microbiol. 20, 282–285.

    Article  CAS  Google Scholar 

  • Silva Filho, G.N. and Vidor, C. 2000. Phosphate solubilization by microorganisms in the presence of diffrent carbone source. Rev. Bras. Cienc. Solo. 24, 311–319.

    CAS  Google Scholar 

  • Silva, A.C.S., Chagas Junior, A.F., Oliveira, L.A., and Chagas, L.F.B. 2011. Ocorrência de bactérias solubilizadoras de fosfato nas raízes de importancia econ.mica em Manaus e Rio Preto da Eva, Amazonas. J. Biotechnol. Biodivers. 2, 37–42. (in Brazilian).

    Google Scholar 

  • Sobral, J.K., Araujo, W.L., Mendes, R., Geraldi, I.O., Pizzirani-Kleiner, A.A., and Azevedo, J.L. 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol. 6, 1244–1251.

    Article  Google Scholar 

  • Souza, S.A., Xavier, A.A., Costa, M.R., Cardoso, A.M.S., Pereira, M.C.T., and Nietsche, S. 2013. Endophytic bacterial diversity in banana ‘Prata An./rs (Musa spp.) roots. Genet. Mol. Res. 36, 252–264.

    CAS  Google Scholar 

  • Stover, R.H. and Simmonds, N.W. 1987. Bananas. 3 ed. Longman, Essex, UK.

    Google Scholar 

  • Taurian, T., Anzuay, M.S., Angelini, J.G., Tonelli, M.L., Ludueña, L. Pena, D., Ibañez, F., and Fabra, A. 2010. Phosphate-solubilizing peanut associated bacteria: screening for plant growth-promoting activities. Plant Soil 329, 421–431.

    Article  CAS  Google Scholar 

  • Teixeira, K.R.S. 1997. Bases moleculares e genética da fixa..o de nitrogênio. Embrapa-CNPAB, Seropédica, Rio de Janeiro, Brazil.

    Google Scholar 

  • Teixeira, M.A., Melo, I.S., Vieira, R.F., Costa, F.E.C., and Harakava, R. 2007. Cassava endophytic microorganisms of commercial plantings and ethnovarieties in three Brazilian states. Pesqui. Agropecu. Bras. 42, 43–49.

    Article  Google Scholar 

  • Tsavkelova, E.A., Klimova, S.Y., Cherdyntseva, T.A., and Netrusov, A.I. 2006. Microbial producers of plat growth stimulators and their practical use: a Review. Appl. Biochem. Microbiol. 42, 117–126.

    Article  CAS  Google Scholar 

  • Weber, O.B., Baldani, V.L.D., Teixeira, K.R.S., Kirchhof, G., Baldani, J.I., and Döbereiner, J. 1999. Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant Soil 210, 103–113.

    Article  CAS  Google Scholar 

  • Whitelaw, M.A. 2000. Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv. Agron. 69, 99–151.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Nietsche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrade, L.F., de Souza, G.L.O.D., Nietsche, S. et al. Analysis of the abilities of endophytic bacteria associated with banana tree roots to promote plant growth. J Microbiol. 52, 27–34 (2014). https://doi.org/10.1007/s12275-014-3019-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-014-3019-2

Keywords

Navigation