Skip to main content
Log in

Desertiactinospora gelatinilytica gen. nov., sp. nov., a new member of the family Streptosporangiaceae isolated from the Karakum Desert

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

A novel, Gram-positive, spore-forming actinomycete, designated strain 7K107T, was isolated from a soil sample collected from the Karakum Desert, Turkmenistan. Strain 7K107T forms extensively branched substrate mycelia and aerial mycelia which differentiate into short chains of spores. The novel strain contains meso-diaminopimelic acid as the diagnostic wall amino acid and glucose, galactose, madurose and ribose as whole cell sugars. The predominant menaquinones were identified as MK-10(H4), MK-9(H4), MK-10(H6) and MK-9(H6). The polar lipids were found to be diphosphatidylglycerol, phosphatidylethanolamine, glycolipids, phospholipids, unidentified lipids and an aminolipid. Major fatty acids were identified as C17:0 10-methyl and C14:0. The G + C content of the genomic DNA was determined to be 70.8%. Phylogenetic analysis based on 16S rRNA gene sequences showed that the strain is a member of the family Streptosporangiaceae. The strain shares high 16S rRNA gene sequence similarity (96.2%) with Sphaerisporangium album YIM 48782T followed by Sphaerisporangium corydalis NEAU-YHS15T (96.0%) and Nonomuraea candida HMC10T (95.9%). However, phylogenetic analyses based on 16S rRNA and gyrB genes, as well as whole genome comparison, confirmed the distinctiveness of the strain from closely related type strains of the genera Sphaerisporangium, Nonomuraea and Thermostaphylospora. On the basis of morphological, chemotaxonomic and phylogenetic as well as genomic analyses, strain 7K107T is concluded to represent a new genus within the family Streptosporangiaceae, for which the name Desertiactinospora gelatinilytica gen. nov., sp. nov is proposed. The type strain of D. gelatinilytica is 7K107T (= DSM 107423T = JCM 32585T = KCTC 49108T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ara I, Kudo T (2007) Sphaerosporangium gen. nov., a new member of the family Streptosporangiaceae, with descriptions of three new species as Sphaerosporangium melleum sp. nov., Sphaerosporangium rubeum sp. nov. and Sphaerosporangium cinnabarinum sp. nov., and transfer of Streptosporangium viridialbum Nonomura and Ohara 1960 to Sphaerosporangium viridialbum comb. nov. Actinomycetologica 21:11–21

    Article  CAS  Google Scholar 

  • Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R, Formsma K, Gerdes S, Glass E, Kubal M, Meyer F, Olsen G, Olson R, Osterman A, Overbeek R, McNeil L, Paarmann D, Paczian T, Parrello B, Pusch G, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9(1):75

    Article  CAS  Google Scholar 

  • Bertels F, Silander OK, Pachkov M, Rainey PB, van Nimwegen E (2014) Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol Biol Evol 31:1077–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75:4801–4805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bull AT (2011) Actinobacteria of the extremobiosphere. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 1203–1240

    Chapter  Google Scholar 

  • Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME, Montero-Calasanz MC, Sahin N, Smith DL, Kim KE, Peluso P, Deshpande S, Woyke T, Shapiro N, Kyrpides NC, Klenk H-P, Göker M, Goodfellow M (2018) Genomebased classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 8:525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castejon M, Menéndez MC, Comas I, Vicente A, Garcia MJ (2018) Whole-genome sequence analysis of the Mycobacterium avium complex and proposal of the transfer of Mycobacterium yongonense to Mycobacterium intracellulare subsp. yongonense subsp. nov. Int J Syst Evol Microbiol 68:1998–2005

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Evol Microbiol 45:240–245

    CAS  Google Scholar 

  • Couch JN (1955) A new genus and family of the Actinomycetales, with a revision of the genus Actinoplanes. J Elisha Mitchell Sci Soc 71:148–155

    Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Goodfellow M (1971) Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 69:33–90

    Article  CAS  PubMed  Google Scholar 

  • Goodfellow M, Quintana ET (2012) Family 1. Streptosporangiaceae Goodfellow, Stanton, Simpson and Minnikin 1990a 321VP. In: Goodfellow M, Kampfer P, Busse H-J, Trujillo M, Suzuki KE, Ludwig W, Whitman WB (eds) Bergey’s manual of systematic bacteriology, vol. 5, vol 2. Springer, New York

    Chapter  Google Scholar 

  • Goodfellow M, Stanton LJ, Simpson KE, Minnikin DE (1990) Numerical and chemical classification of ActinopIanes and some related actinomycetes. J Gen Microbiol 136:19–36

    Article  Google Scholar 

  • Goodfellow M, Maldonado LA, Quintana ET et al (2005) Reclassification of Nonomuraea flexuosa (Meyer 1989) Zhang et al. 1998 as Thermopolyspora flexuosa gen. nov., comb. nov., nom. rev. Int J Syst Evol Microbiol 55:1979–1983

    Article  CAS  PubMed  Google Scholar 

  • Gordon RE, Barnett DA, Handerhan JE, Pang C (1974) Nocardia coeliaca, Nocardia autotrophica, and the nocardin strain. Int J Syst Bacteriol 24:54–63

    Article  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Jensen A, Scholz CF, Kilian M (2016) Re-evaluation of the taxonomy of the Mitis group of the genus Streptococcus based on whole genome phylogenetic analyses, and proposed reclassification of Streptococcus dentisani as Streptococcus oralis subsp. dentisani comb. nov., Streptococcus tigurinus as Streptococcus oralis subsp. tigurinus comb. nov., and Streptococcus oligofermentans as a later synonym of Streptococcus cristatus. Int J Syst Bacteriol 66(11):4803–4820

    Article  CAS  Google Scholar 

  • Jones KL (1949) Fresh isolates of actinomycetes in which the presence of sporogenous aerial mycelia is a fluctuating characteristic. J Bacteriol 57:141–145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly KL (1964) Inter-Society Color Council-National Bureau of Standards color name charts illustrated with centroid colors. US Government Printing Office, Washington

    Google Scholar 

  • Kroppenstedt RM (1985) Fatty acid and menaquinone analysis of actinomycetes and related organisms. In: Goodfellow M, Minnikin DE (eds) Chemical methods in bacterial systematics. Academic Press, London, pp 173–199

    Google Scholar 

  • Kudo T, Itoh T, Miyadoh S, Shomura T, Seino A (1993) Herbidospora gen. nov., a new genus of the family Streptosporangiaceae Goodfellow et al. 1990. Int J Syst Bacteriol 43:319–328

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) Mega7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuykendall LD, Roy MA, O’Neill JJ, Devine TE (1988) Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38:358–361

    Article  CAS  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lechevalier MP, Lechevalier HA (1970a) Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Bacteriol 20:435–443

    Article  CAS  Google Scholar 

  • Lechevalier HA, Lechevalier MP (1970b) A critical evaluation of the genera of aerobic actinomycetes. In: Prauser H (ed) The actinomycetales. Gustav Fischer Verlag, Jena, pp 393–405

    Google Scholar 

  • Lechevalier MP, De Bièvre C, Lechevalier HA (1977) Chemotaxonomy of aerobic actinomycetes: phospholipid composition. Biochem Syst Ecol 5:249–260

    Article  CAS  Google Scholar 

  • Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M (2013) Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinform 14:60

    Article  Google Scholar 

  • Meyers PR (2014) Gyrase subunit B amino acid signatures for the actinobacterial family Streptosporangiaceae. Syst Appl Microbiol 37:252–260

    Article  CAS  PubMed  Google Scholar 

  • Meyers PR (2015) Analysis of recombinase A (recA/RecA) in the actinobacterial family Streptosporangiaceae and identification of molecular signatures. Syst Appl Microbiol 38:567–577

    Article  CAS  PubMed  Google Scholar 

  • Meyers PR (2017) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxyl acids. J Clin Microbiol 16:584–586

    Google Scholar 

  • Miller LT (1982) Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxyl acids. J Clin Microbiol 16:584–586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mingma R, Duangmal K, Take A, Inahashi Y, Omura S et al (2016) Proposal of Sphaerimonospora cavernae gen. nov., sp. nov. and transfer of Microbispora mesophila (Zhang et al. 1998) to Sphaerimonospora mesophila comb. nov. and Microbispora thailandensis (Duangmal et al. 2012) to Sphaerimonospora thailandensis comb. nov. Int J Syst Evol Microbiol 66:1735–1744

    Article  CAS  PubMed  Google Scholar 

  • Minnikin D, O’donnell A, Goodfellow M, Alderson G, Athalye M, Schaal A, Parlett J (1984) An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241

    Article  CAS  Google Scholar 

  • Montero-Calasanz JP, Meier-Kolthoff MDC, Zhang D-F, Yaramis A, Rohde M, Woyke T, Kyrpides NC, Schumann P, Li W-J, Göker M (2017) Genome-scale data call for a taxonomic rearrangement of Geodermatophilaceae. Front Microbiol 8:2501

    Article  PubMed  PubMed Central  Google Scholar 

  • Nash P, Krent MM (1991) Culture media. In: Ballows A, Hauser WJ, Herrmann KL, Isenberg HD, Shadomy HJ (eds) Manual of clinical microbiology, 5th edn. American Society for Microbiology, Washington DC, pp 1268–1270

    Google Scholar 

  • Nicholson AC, Gulvik CA, Whitney AM, Humrighouse BW, Graziano J, Emery B, Bizet C (2018) Revisiting the taxonomy of the genus Elizabethkingia using whole-genome sequencing, optical mapping, and MALDI-TOF, along with proposal of three novel Elizabethkingia species: Elizabethkingia bruuniana sp. nov., Elizabethkingia ursingii sp. nov., and Elizabethkingia occulta sp. nov. Antonie Van Leeuwenhoek 111(1):55–72

  • Nonomura H, Ohara Y (1957) Distribution of actinomycetes in soil. II. Microbispora, a new genus of the Streptomycetaceae. J Ferment Technol 35:307–311

    Google Scholar 

  • Nouioui I, Carro L, García-López M, Meier-Kolthoff J, Woyke T, Kyrpides N, Klenk H-P, Goodfellow M, Göker M (2018) Genome-based taxonomic classification of the phylum Actinobacteria. Front Microbiol 9:2007

    Article  PubMed  PubMed Central  Google Scholar 

  • Otoguro M, Yamamura H, Quintana ET (2014) The family Streptosporangiaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, pp 1011–1045

    Google Scholar 

  • Rosselló-Móra R, Trujillo ME, Sutcliffe IC (2017) Introducing a digital protologue: a timely move towards a database-driven systematics of archaea and bacteria. Antonie Van Leeuwenhoek 110(4):455–456

    Article  PubMed  Google Scholar 

  • Runmao H, Guizhen W, Junying L (1993) A new genus of actinomycetes, Planotetraspora gen. nov. Int J Syst Bacteriol 43:468–470

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sangal V, Goodfellow M, Jones AL, Schwalbe EC, Blom J, Hoskisson PA, Sutcliffe IC (2016) Next-generation systematic: an innovative approach to resolve the structure of complex prokaryotic taxa. Sci Rep 6:38392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanglier JJ, Whitehead D, Saddler GS, Ferguson EV, Goodfellow M (1992) Pyrolisis mass spectrometry as a method for the classification, identification and selection of actinomycetes. Gene 115:235–242

    Article  CAS  PubMed  Google Scholar 

  • Sasser M (1990) Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. MIDI Inc., Newark

    Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Staneck JL, Roberts GD (1974) Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tamura T, Suzuki S, Hatano K (2000) Acrocarpospora gen. nov., a new genus of the order Actinomycetales. Int J Syst Evol Microbiol 50:1163–1171

    Article  CAS  PubMed  Google Scholar 

  • Tang B, Xie F, Zhao W, Wang J, Dai S, Zheng H, Ding X, Cen X, Liu H, Yu Y, Zhou H, Zhou Y, Zhang L, Goodfellow M, Zhao G-P (2016) A systematic study of the whole genome sequence of Amycolatopsis methanolica strain 239T provides an insight into its physiological and taxonomic properties which correlate with its position in the genus. Synth Syst Biotechnol 1:169–186

    Article  PubMed  PubMed Central  Google Scholar 

  • Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J (2016) NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res 44:6614–6624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiemann JE, Beretta G (1968) A new genus of the Actinoplanaceae: Planobispora, gen. nov. Arch Microbiol 62:157–166

    CAS  Google Scholar 

  • Thiemann JE, Pagani H, Beretta G (1967) A new genus of the Actinoplanaceae: Planomonospora, gen. nov. Giorn Microbiol 15:27–38

    Google Scholar 

  • Thiemann JE, Pagani H, Beretta G (1968) A new genus of the Actinomycetales: Microtetraspora gen. nov. J Gen Microbiol 50:295–303

    Article  CAS  PubMed  Google Scholar 

  • Tindall BJ (1990) Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66(1–3):199–202

    Article  CAS  Google Scholar 

  • Waksman SA (1961) The Actinomycetes, vol. 2, Classification, identification and descriptions of genera and species. Williams and Wilkins, Baltimore

    Google Scholar 

  • Waksman SA (1967) The actinomycetes a summary of current knowledge. Ronald Press, New York

    Google Scholar 

  • Weber T, Blin K, Duddela S, Krug D, Kim H-U, Bruccoleri R, Lee SY, Fischbach M-A, Müller R, Wohlleben W, Breitling R (2015) antiSMASH 3.0-a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA for phylogenetic study. J Bacteriol 173:697–703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams ST, Goodfellow M, Alderson G, Wellington EMH, Sneath PHA, Sackin MJ (1983) Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813

    CAS  PubMed  Google Scholar 

  • Wu H, Liu B, Shao Y, Ou X, Huang F (2018) Thermostaphylospora grisealba gen. nov., sp. nov., isolated from mushroom compost and transfer of Thermomonospora chromogena Zhang et al. 1998 to Thermostaphylospora chromogena comb. nov. Int J Syst Evol Microbiol 68:602–608

    Article  CAS  PubMed  Google Scholar 

  • Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol 67:1613–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Wang Y, Ruan J (1998) Reclassification of Thermomonospora and Microtetraspora. Int J Syst Bacteriol 48:411–422

    Article  PubMed  Google Scholar 

  • Zhang Y-Q, Liu H-Y, Yu L-Y, Lee J-C, Park D-J, Kim C-J, Xu L-H, Jiang C-L, Li W-J (2011) Sinosporangium album gen. nov., sp. nov., a new member of the suborder Streptosporangineae. Int J Syst Evol Microbiol 61:592–597

    Article  CAS  PubMed  Google Scholar 

  • Zhi X-Y, Li W-J, Stackebrandt E (2009) An update on the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59:589–608

    Article  CAS  PubMed  Google Scholar 

  • Zhou EM, Tang SK, Sjoholm C, Song ZQ, Yu TT, Yang LL, Ming H, Nie GX, Li WJ (2012a) Thermoactinospora rubra gen. nov., sp. nov., a thermophilic actinomycete isolated from Tengchong, Yunnan province, south-west China. Antonie Van Leeuwenhoek 102:177–185

    Article  CAS  PubMed  Google Scholar 

  • Zhou EM, Yang LL, Song ZQ, Yu TT, Nie GX et al (2012b) Thermocatellispora tengchongensis gen. nov., sp. nov., a new member of the family Streptosporangiaceae. Int J Syst Evol Microbiol 62:2417–2423

    Article  CAS  PubMed  Google Scholar 

  • Zonn IS, Esenov PE (2012) The Karakum Desert. In: Zonn IS, Kostianoy AG (eds) The Turkmen Lake Altyn Asyr and water resources in Turkmenistan. Springer, Berlin, pp 23–37

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was supported by Ondokuz Mayis University (OMU), project no. PYO.FEN.1901.16.001.

Author information

Authors and Affiliations

Authors

Contributions

NS designed study. HS, HA, KG and DC performed research. HA, NS and HS analysed data and wrote the manuscript. All of the authors assisted in writing the manuscript, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Nevzat Sahin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants and/or animals performed by any of the authors. The formal consent is not required in this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

The gyrB gene accession numbers of the representative members of the family Streptosporangiaceae. The data included was modified from Meyers (2014, 2017) (DOCX 25 kb)

Table S2

GyrB variable amino acid positions for strain 7K107T, Sphaerisporangium album DSM 45172T, Thermostaphylospora chromogena DSM 43794T and Sinosporangium album CPCC 201354T. Amino acid positions were numbered based on the Streptosporangium roseum DSM 43021T GyrB protein (DOCX 17 kb)

Fig. S1

Polar lipid profile of strain 7K107T. Key: DPG, Diphosphatidylglycerol; PE, Phosphatidylethanolamine; PL, Phospholipid; AL, Aminolipid; GL, Glycolipid; L, Lipid (DOCX 90 kb)

Fig. S2

Maximum-Likelihood tree based on almost complete 16S rRNA gene sequences showing relatyynships between strain 7K107T and closely related type strains of the family Streptosporangiaceae. The tree was inferred under the Tamura and Nei model (Tamura and Nei 1993) and the branches are scaled in terms of the expected number of substitutions per site. The numbers above the branches are support values when larger than 50% bootstrapping. Streptomyces ambofaciens ATCC 23877T was used as outgroup. The analysis involved 41 nucleotide sequences. All positions containing gaps and missing data were eliminated. There were a total of 1267 positions in the final dataset. Bar, 0.05 substitutions per nucleotide site (DOCX 507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saygin, H., Ay, H., Guven, K. et al. Desertiactinospora gelatinilytica gen. nov., sp. nov., a new member of the family Streptosporangiaceae isolated from the Karakum Desert. Antonie van Leeuwenhoek 112, 409–423 (2019). https://doi.org/10.1007/s10482-018-1169-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-018-1169-7

Keywords

Navigation