Skip to main content
Log in

Agroecological management of spontaneous vegetation in Bachajón’s Tseltal Maya milpa: a preventive focus

  • Published:
Agriculture and Human Values Aims and scope Submit manuscript

Abstract

In recent years, a great deal of evidence has accumulated on the health risks and environmental impacts of some herbicides. Both conventional agriculture and agroecology are searching for alternatives to address the challenges posed by the consequences of herbicide use. In this search, peasant and indigenous agroecosystems have much to contribute since their crops evolved thousands of years ago together with diverse communities of weeds, and farmers have carried out sophisticated strategies to manage them. Through participant observation, semi-structured interviews, free lists, and botanical collection, we document a milpa design that integrates and manages spontaneous vegetation to take advantage of its presence and minimize risks of crop loss. The objective of this article is to critically contrast agroecological mechanisms in this milpa design which matches the prevention principle with a set of recommendations recognized as preventive in conventional weed science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CONABIO:

National Commission for the Knowledge and Use of Biodiversity

CONAHCyT:

National Council for the Humanities, Sciences, and Technology

DOF:

Official Journal of the Federation

INEGI:

National Institute of Statistics and Geography

RAN:

National Agrarian Registry

References

  • Baessler, C., and S. Klotz. 2006. Effects of changes in agricultural land-use on landscape structure and arable weed vegetation over the last 50 years. Agriculture ecosystems & environment 115 (1–4): 43–50.

    Article  Google Scholar 

  • Bai, S., and S. M. Ogbourne. 2016. Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination. Environmental Science and Pollution Research 23: 18988–19001.

    Article  CAS  PubMed  Google Scholar 

  • Baraibar, B. 2013. La depredación de semillas de malas hierbas, una función ecológica a conservar y potenciar. Revista Ecosistemas 22 (1): 62–66.

    Google Scholar 

  • Benbrook, C. M. 2016. Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe 28 (1): 1–15.

    Article  CAS  Google Scholar 

  • Bogie, N., R. Bayala, I. Diedhiou, M. H. Conklin, M. Fogel, R. Dick, and T. Ghezzehei. 2018. Hydraulic redistribution by native sahelian shrubs: bioirrigation to resist in-season drought. Frontiers in Environmental Science 6: 98.

    Article  Google Scholar 

  • Breton, A. 1984. Bachajón: organización socioterritorial de una comunidad Tseltal. Instituto Nacional Indigenista. México.

  • Butinof, M., R. Fernández, S. Muñoz, D. Lerda, M. Blanco, J. Lantieri, L. Antolini, M. Gieco, P. Ortiz, I. Filippi, G. Franchini, M. Eandi, F. Montedoro, and M. P. Díaz. 2017. Valoración de la exposición a plaguicidas en cultivos extensivos de Argentina y su potencial impacto sobre la salud. Revista argentina de salud pública 8 (33): 8–15.

    Google Scholar 

  • Chacón, J. C., and S. R. Gliessman. 1982. Use of the “non-weed” concept in traditional tropical agroecosystems of south-eastern Mexico. Agro-ecosystems 8(1): 1–11.

  • Christoffoleti, P. J., S. J. Pinto de Carvalho, M. Nicolai, D. Doohan, and M. VanGessel. 2007. Prevention strategies in weed management. In Non-chemical weed management: principles, concepts and technology, eds. M. K. Upadhyaya, and R. E. Blackshaw, 1–16. Oxfordshire, UK: CABI.

    Google Scholar 

  • Clapp, J. 2021. Explaining growing glyphosate use: the political economy of herbicide-dependent agriculture. Global Environmental Change 67: 102239.

    Article  Google Scholar 

  • CONABIO. National Commission for the Knowledge and Use of Biodiversity. 2009. Malezas de México. www.conabio.gob.mx. Accessed 5 July 2022.

  • Cong, P. T., and R. Merckx. 2005. Improving phosphorus availability in two upland soils of Vietnam using Tithonia diversifolia H. Plant and Soil 269: 11–23.

    Article  CAS  Google Scholar 

  • De Almeida Campos, C. A., S. D. Coelho, N. C. Ramos, and J. A. Alves Meira-Neto. 2018. Agroforestry systems reduce invasive species richness and diversity in the surroundings of protected areas. Agroforestry systems 92: 1495–1505.

    Article  Google Scholar 

  • DOF. 2020. DECRETO por el que se establecen las acciones que deberán realizar las dependencias y entidades que integran la Administración Pública Federal, en el ámbito de sus competencias, para sustituir gradualmente el uso, adquisición, distribución, promoción e importación de la sustancia química denominada glifosato y de los agroquímicos utilizados en nuestro país que lo contienen como ingrediente activo, por alternativas sostenibles y culturalmente adecuadas, que permiten mantener la producción y resulten seguras para la salud humana, la diversidad biocultural del país y el ambiente. Mexico City: Official Journal of the Federation. www.dof.gob.mx. Accessed 10 December 2022.

  • Domínguez, A., G. G. Brown, K. D. Sautter, C. M. Ribas de Oliveira, E. Carvalho de Vasconcelos, C. C. Niva, M. L. C. Bartz, and J. C. Bedano. 2016. Toxicity of AMPA to the earthworm Eisenia andrei Bouché, 1972 in tropical artificial soil. Scientific Reports 6 (1): 19731.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Duary, B. 2014. Weed prevention for quality seed production of crops. SATSA Mukhapatra Annual Technical Issue 18: 48–57.

    Google Scholar 

  • Foster, M. S. 2007. The potential of fruit trees to enhance converted habitats for migrating birds in southern Mexico. Bird Conservation International 17 (1): 45–61.

    Article  Google Scholar 

  • Gaba, S., B. Chauvel, F. Dessaint, V. Bretagnolle, and S. Petit. 2010. Weed species richness in winter wheat increases with landscape heterogeneity. Agriculture Ecosystems & Environment 138 (3–4): 318–323.

    Article  Google Scholar 

  • Gaba, S., X. Reboud, and G. Fried. 2016. Agroecology and conservation of weed diversity in agricultural lands. Botany Letters 163 (4): 351–354.

    Article  Google Scholar 

  • Gallagher, R. S., E. C. M. Fernandes, and E. McCallie. 1999. Weed management through short-term improved fallows in tropical agroecosystems. Agroforestry Systems 47: 197–221.

    Article  Google Scholar 

  • Guzmán, C. G. I., and A. Vecina. 2001. Ecología de las malezas y técnicas de manejo. In La práctica de la agricultura y ganadería ecológicas. Comité Andaluz de Agricultura Ecológica, 139–160. Spain.

  • Hagner, M., J. Mikola, I. Saloniemi, K. Saikkonen, and M. Helander. 2019. Effects of a glyphosate-based herbicide on soil animal trophic groups and associated ecosystem functioning in a northern agricultural field. Scientific reports 9 (1): 8540.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Hands, M. 2021. The search for a sustainable alternative to slash-and-burn agriculture in the World’s rain forests: the Guama Model and its implementation. Royal Society Open Science 8 (2): 201204.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • INEGI. National Institute of Statistics and Geography. 2020. Presentación de resultados. Censo 2020 de población y vivienda. www.inegi.org.mx. Accessed 29 June 2021.

  • INEGI. National Institute of Statistics and Geography. 2017. Conjunto de datos vectoriales de uso de suelo y vegetación escala 1:250 000. Serie VI (Capa Unión).

  • Jabran, K. 2017. Manipulation of allelopathic crops for weed control. Springer International Publishing.

  • Jama, B., C. A. Palm, R. J. Buresh, A. Niang, C. Gachengo, G. Nziguheba, and B. Amadalo. 2000. Tithonia diversifolia as a green manure for soil fertility improvement in western Kenya: a review. Agroforestry systems 49: 201–221.

    Article  Google Scholar 

  • Kameda, C., and E. Nawata. 2017. Relationship between fallow period, forest vegetation and weeds in swidden agriculture in northern Laos. Agroforestry Systems 91: 553–564.

    Article  Google Scholar 

  • Levy-Tacher, S. I., J. R. Aguirre, M. M. Martínez, and A. Durán. 2002. Caracterización del uso tradicional de la flora espontánea en la comunidad lacandona de Lacanhá, Chiapas, México. Interciencia 27(10): 512–520.

  • Levy-Tacher, S. I., I. Vleut, F. Román-Dañobeytia, and J. Aronson. 2015. Natural regeneration after long-term bracken fern control with balsa (Ochroma pyramidale) in the Neotropics. Forests 6(6): 2163–2177.

  • Liebman, M., and C. P. Staver. 2001. Crop diversification for weed management. In Ecological management of agricultural weeds, 322–374. Cambridge University Press. Cambridge UK.

  • MacDicken, K. G., K. Hairiah, A. Otsamo, B. Duguma, and N. M. Majid. 1996. Shade-based control of Imperata cylindrica: tree fallows and cover crops. Agroforestry Systems 36: 131–149.

    Article  Google Scholar 

  • Meléndez, G. L., F. Trabanino, and A. Caballero. 2013. Tres perspectivas en torno al uso comestible de las inflorescencias de las palmas pacay (a) y chapay (a) en Chiapas, México: enfoques paleoetnobotánico, nutricional y lingüístico. Estudios de cultura maya 41: 175–199.

    Article  Google Scholar 

  • Migliorini, P., and A. Wezel. 2017. Converging and diverging principles and practices of organic agriculture regulations and agroecology. A review. Agronomy for sustainable development 37: 1–18.

    Article  CAS  Google Scholar 

  • Miranda, M. A. F. M., R. M. Varela, A. Torres, J. M. Molinillo, S. C. J. Gualtieri, and F. A. Macías. 2015. Phytotoxins from Tithonia diversifolia. Journal of Natural Products 78 (5): 1083–1092.

    Article  CAS  PubMed  Google Scholar 

  • Monroy-Sais, A. S., M. Astier, G. Wies, R. Pavesi, D. Mascorro-de Loera, and L. García-Barrios. 2022. Exploring the complexity of smallholders’ intense use of glyphosate in maize crops from South Mexico: remarks for an ongoing agroecological transition. Frontiers in Sustainable Food Systems 6: 908779.

    Article  Google Scholar 

  • Morales, H., and I. Perfecto. 2000. Traditional knowledge and pest management in the guatemalan highlands. Agriculture and Human Values 17: 49–63.

    Article  Google Scholar 

  • Morales, H., I. Armbrecht, D. Gonthier, and K. A. G. Wyckhuys. 2021. Moving from a curative to preventative Pest Management Paradigm. Frontiers in Sustainable Food Systems 5: 808124.

    Article  Google Scholar 

  • Mortensen, D. A., J. F. Egan, B. D. Maxwell, M. R. Ryan, and R. G. Smith. 2012. Navigating a critical juncture for sustainable weed management. BioScience 62 (1): 75–84.

    Article  Google Scholar 

  • Muenscher, W. C. L. 1960. Weeds. Macmillan.

  • Müller, B. 2020. Glyphosate—A love story. Ordinary thoughtlessness and response-ability in industrial farming. Journal of Agrarian Change 21 (1): 160–179.

    Article  ADS  Google Scholar 

  • Muñoz, J. P., T. C. Bleak, and G. M. Calaf. 2020. Glyphosate and the key characteristics of an endocrine disruptor: a review. Chemosphere 270: 128619.

    Article  PubMed  Google Scholar 

  • Nair, P. K. R., M. B. Kumar, and V. D. Nair. 2021. Shifting cultivation and taungya. In An introduction to Agroforestry, P. K. R. Nair, ed. et al., 61–86. Switzerland: Springer.

    Chapter  Google Scholar 

  • Olabode, O. S., O. Sola, W. B. Akanbi, G. O. Adesina, and P. A. Babajide. 2007. Evaluation of Tithonia diversifolia (Hemsl.) A Gray for soil improvement. World Journal of Agricultural Sciences 3 (4): 503–507.

    Google Scholar 

  • Polian, G. 2015. Diccionario multidialectal del tseltal. Mexico: CIESAS.

  • RAN. National Agrarian Registry. 2023. Padrón e Historial de Núcleos Agrarios. https://phina.ran.gob.mx. Accessed 27 March 2023.

  • Rincón, R. R., and F. Gutiérrez-Miceli. 2008. Características biológicas de Acaciella angustissima (Mill.) Britton & Rose en su hábitat natural y evaluación de su potencial cortical en Chiapas, México. Agrociencia 42(1): 129–137.

  • Robinson, B. S., J. Bennie, R. Inger, R. Early, and K. J. Gaston. 2018. Sweet flowers are slow and weeds make haste: anthropogenic dispersal of plants via garden and construction soil. Journal of Urban Ecology 4 (1): 1–6.

    Article  CAS  Google Scholar 

  • Samsel, A., and S. Seneff. 2015. Glyphosate, pathways to modern diseases IV: cancer and related pathologies. Journal of Biological Physics and Chemistry 15 (3): 121–159.

    Article  CAS  Google Scholar 

  • Sánchez, V. G., and S. J. Sarandón. 2014. Principios de manejo ecológico de malezas. In Agroecología: bases teóricas para el diseño y manejo de agroecosistemas sustentables, eds. S. J. Sarandón, and C. C. Flores, 286–313. Buenos Aires, Argentina: Universidad Nacional de La Plata.

    Google Scholar 

  • Scrase, F. M., F. L. Sinclair, J. F. Farrar, P. S. Pavinato, and D. L. Jones. 2019. Mycorrhizas improve the absorption of non-available phosphorus by the green manure Tithonia diversifolia in poor soils. Rhizosphere 9: 27–33.

    Article  Google Scholar 

  • Shaheen, S., M. Ahmad, and N. Haroon. 2017. Edible wild plants: an alternative approach to food security. Switzerland: Springer International Publishing.

    Book  Google Scholar 

  • Soto-Pinto, L., and M. Anzueto-Martínez. 2016. Los acahuales mejorados. Una práctica agroforestal innovadora de los Maya Tseltales. In Etnoagroforestería en México, 221–235. Mexico City, Mexico: Universidad Nacional Autónoma de México.

    Google Scholar 

  • Storkey, J., and P. Neve. 2018. What good is weed diversity? Weed Research 58 (4): 239–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takim, F., G. O. Oyekunle, and J. O. Odeyemi. 2017. Soil weed seedbank dynamic and allelopathic potential of Tithonia diversifolia (Hemsl). Journal of Agriculture Research and Development 16 (1): 20–30.

    Article  Google Scholar 

  • Uwah, D. F., and G. A. Iwo. 2011. Effectiveness of organic mulch on the productivity of maize (Zea mays L.) and weed growth. The Journal of Animal and Plant Sciences 21 (3): 525–530.

    Google Scholar 

  • Vandermeer, J., and I. Perfecto. 2017. Ecological complexity and agroecology. New York, NY: Routledge.

  • Walker, R.H. 1995. Preventive weed management. In Handbook of weed management systems, ed. A. E. Smith, 35–50. New York, NY: Routledge.

  • Wortman, S. E. 2016. Weedy fallow as an alternative strategy for reducing nitrogen loss from annual cropping systems. Agronomy for Sustainable Development 36: 1–10.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Tseltal families who generously shared their knowledge and concerns with us. Betsabe Guillen thanks CONAHCyT for the scholarship awarded during the Ph.D. program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betsabe Guillen Pasillas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillen Pasillas, B., Morales, H., Ferguson, B.G. et al. Agroecological management of spontaneous vegetation in Bachajón’s Tseltal Maya milpa: a preventive focus. Agric Hum Values 41, 331–344 (2024). https://doi.org/10.1007/s10460-023-10490-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10460-023-10490-y

Keywords

Navigation