Skip to main content

Traditional Farming Practices and Its Consequences

  • Chapter
  • First Online:
Microbiota and Biofertilizers, Vol 2

Abstract

Traditional farming practices are based on the indigenous knowledge and experience developed over the centuries and have remained popular even now. Common traditional farming practices include agroforestry, intercropping, crop rotation, cover cropping, traditional organic composting, integrated crop-animal farming, shifting cultivation, and slash-and-burn farming. Although there are many benefits involved with these practices, such as improved soil fertility, carbon sequestration, resource utilization, biodiversity maintenance, sustainability, and environment protection, there are also certain negative implications associated with some practices such as slash-and-burn activities in shifting agriculture. Traditional farming is getting global attention for being a source of sustainable food production in times of environmental degradation and need for safe food production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas F, Hammad HM, Fahad S, Cerdà A, Rizwan M, Farhad W, Bakhat HF (2017) Agroforestry: a sustainable environmental practice for carbon sequestration under the climate change scenarios—a review. Environ Sci Pol 24(12):11177–11191

    Article  CAS  Google Scholar 

  • Acquaah G (2002) Agricultural production systems. In: Principles of crop production, theories, techniques and technology. Prentice Hall, Upper Saddle River, pp 283–317

    Google Scholar 

  • Alam A, Rizvi AH, Verma K, Gautam C (2014) The changing scenario in Indian agriculture: a review. Int J Sci Res Agric Sci 2(7):118–127. https://doi.org/10.12983/ijsras-2014-p0118-0127

    Google Scholar 

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99(1):15–27

    Article  CAS  Google Scholar 

  • Alvarez R, Steinbach HS, De Paepe JL (2017) Cover crop effects on soils and subsequent crops in the pampas: a meta-analysis. Soil Till Res 170:53–65

    Article  Google Scholar 

  • Baraskar M, Choudhary S, Wankhede A, Jain SK, Verma DK (2018) Impact of socio personal attributes of vermicompost production in terms of income and employment generation in Hoshangabad District (Madhya Pradesh). SSRG Int J Agric Environ Sci 5(4):34–36

    Google Scholar 

  • Barker, Randolph, Herdt RW, Rose B (1985) The rice economy of Asia resource for the future, in. Washington

    Google Scholar 

  • Borggaard OK, Gafur A, Petersen L (2003) Sustainability appraisal of shifting cultivation in the Chittagong Hill tracts of Bangladesh. Ambio 32:118–123

    Article  PubMed  Google Scholar 

  • Brady NC (1996) Alternatives to slash-and-burn: a global imperative. Agric Ecosyst Environ 58:3–11

    Article  Google Scholar 

  • Burton S (1998) A history of India. Blackwell Publishing, Chichester. CSIRO 2006 press release on Seed Quest website

    Google Scholar 

  • Cooper RJ, Aziza JH, Hiscocka KM, Lovetta AA, Dugdalea SJ, Su¨nnenberga G, Noble L, Beamish J, Hovesen P (2017) Assessing the farm-scale impacts of cover crops and noninversion tillage regimes on nutrient losses from an arable catchment. Agric Ecosyst Environ 237:181–193

    Article  CAS  Google Scholar 

  • Coulibaly JY, Chiputwa B, Nakelse T, Kundhlande G (2017) Adoption of agroforestry and the impact on household food security among farmers in Malawi. Agric Syst 155:52–69

    Article  Google Scholar 

  • Dabney SM, Delgado JA, Reeves DW (2001) Using winter cover crops to improve soil and water quality. Commun Soil Sci Plant Anal 32:1221–1250. https://doi.org/10.1081/CSS-100104110

    Article  CAS  Google Scholar 

  • Dar GH, Bandh SA, Kamili AN, Nazir R, Bhat RA (2013) Comparative analysis of different types of bacterial colonies from the soils of Yusmarg Forest, Kashmir valley India. Ecologia Balkanica 5(1):31–35

    Google Scholar 

  • Duchene O, Vian JF, Celette F (2017) Intercropping with legume for agroecological cropping systems: complementarity and facilitation processes and the importance of soil microorganisms: a review. Agric Ecosyst Environ 240:148–161

    Article  Google Scholar 

  • Dury J, Schaller N, Garcia F, Reynaud A, Bergez JE (2012) Models to support cropping plan and crop rotation decisions: a review. Agron Sustain Dev 32(2):567–580

    Article  Google Scholar 

  • Forte A, Fagnano M, Fierro A (2017) Potential role of compost and green manure amendment to mitigate soil GHGs emissions in Mediterranean drip irrigated maize production systems. J Environ Manag 192:68–78

    Article  CAS  Google Scholar 

  • Frasier I, Quiroga A, Noellemeyer E (2016) Effect of different cover crops on C and N cycling in sorghum NT systems. Sci Total Environ 562:628–639

    Article  CAS  PubMed  Google Scholar 

  • Ge Y, Zhang JB, Zhang LM, Yang M, He JZ (2008) Long-term fertilization regimes affect bacterial community structure and diversity of an agricultural soil in Northern China. J Soils Sediments 8:43–50

    Article  CAS  Google Scholar 

  • Gopinath KA, Saha S, Mina BL, Pande H, Kundu S, Gupta HS (2008) Influence of organic amendments on growth, yield and quality of wheat and on soil properties during transition to organic production. Nutr Cycl Agroecosyst 82(1):51–60

    Article  CAS  Google Scholar 

  • Hamadani H, Parrah JD, Hassan N, Dar RA, Sheikh FD (2020) Study of the socioeconomic status of women vermicompost-producing farmers in Kashmir Valley. Int J Curr Microbiol Appl Sci 9(4):1486–1491

    Article  Google Scholar 

  • Heinimann A, Mertz O, Frolking S, Egelund Christensen A, Hurni K, Sedano F, Parsons Chini L, Sahajpal R, Hansen M, Hurtt G (2017) A global view of shifting cultivation: recent, current, and future extent. PLoS One 12(9):e0184479. https://doi.org/10.1371/journal.pone.0184479

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hu F, Feng F, Zhao C, Chai Q, Yu A, Yin W, Gan Y (2017) Integration of wheat-maize intercropping with conservation practices reduces CO2 emissions and enhances water use in dry areas. Soil Till Res 169:44–53

    Article  Google Scholar 

  • Huang M, Shao M, Zhang L, Li Y (2003) Water use efficiency and sustainability of different long-term crop rotation systems in the Loess Plateau of China. Soil Till Res 72(1):95–104

    Article  Google Scholar 

  • Isaac ME, Gordon AM, Thevathasan N, Oppong SK, Quashie-Sam J (2005) Temporal changes in soil carbon and nitrogen in West African multistrata agroforestry systems: a chronosequence of pools and fluxes. Agrofor Syst 65(1):23–31

    Article  Google Scholar 

  • Kangalawe RY, Noe C, Tungaraza FS, Naimani G, Mlele M (2014) Understanding of traditional knowledge and indigenous institutions on sustainable land management in Kilimanjaro Region, Tanzania. Open J Soil Sci 4(13):469

    Article  Google Scholar 

  • Kumara PR, Munasinghe ES, Rodrigo VHL, Karunaratna AS (2016) Carbon footprint of rubber/sugarcane intercropping system in Sri Lanka: a case study. Proc Food Sci 6:298–302

    Article  Google Scholar 

  • Kunju PCA (2013) Agricultural technology development and transfer in the socio economic transformation of Agrarian economies: the Kerala experience with special reference to Kuttanad. Ph.D thesis submitted to Mahatma Gandhi University, Kottayam

    Google Scholar 

  • Lal R (2008) Carbon sequestration. Philos Trans R Soc B Biol Sci 363(1492):815–830

    Article  CAS  Google Scholar 

  • Latati M, Aouiche A, Tellah S, Laribi A, Benlahrech S, Kaci G, Ounane SM (2017) Intercropping maize and common bean enhances microbial carbon and nitrogen availability in low phosphorus soil under Mediterranean conditions. Eur J Soil Biol 80:9–18

    Article  CAS  Google Scholar 

  • Lazali M, Brahimi S, Merabet C, Latati M, Benadis C, Maougal RT, Ounane SM (2016) Nodular diagnosis of contrasting recombinant inbred lines of Phaseolus vulgaris in multi-local field tests under Mediterranean climate. Eur J Soil Biol 73:100–107

    Article  CAS  Google Scholar 

  • Liu Y, Duan M, Yu Z (2013) Agricultural landscapes and biodiversity in China. Agric Ecosyst Environ 166:46–54

    Article  Google Scholar 

  • Liu X, Lehtonen H, Purola T, Pavlova Y, Ro¨tter R, Palosuo T (2016) Dynamic economic modelling of crop rotations with farm management practices under future pest pressure. Agric Syst 144:65–76

    Article  Google Scholar 

  • Ludden D (1996) Archaic formation of agricultural knowledge in South India. In: Peter Robb meanings of agriculture. Oxford University Press, Delhi, pp 35–70

    Google Scholar 

  • Mbow C, Van Noordwijk M, Luedeling E, Neufeldt H, Minang PA, Kowero G (2014) Agroforestry solutions to address food securityand climate change challenges in Africa. Curr Opin Environ Sustain 6:61–67

    Article  Google Scholar 

  • Misra RV, Roy RN, Hiraoka H (2003) On-farm composting methods. UN-FAO, Rome

    Google Scholar 

  • Muimba-Kankolongo A (2018) Chapter 6 - Common cultivation practices. In: Muimba-Kankolongo A (ed) Food crop production by smallholder farmers in Southern Africa. Academic Press, pp 49–58. https://doi.org/10.1016/B978-0-12-814383-4.00006-2

  • Ning C, Qu J, He L, Yang R, Chen Q, Luo S, Cai K (2017) Improvement of yield, pest control and Si nutrition of rice by rice-water spinach intercropping. Field Crops Res 208:34–43

    Article  Google Scholar 

  • Oelbermann M, Voroney RP, Gordon AM (2004) Carbon sequestration in tropical and temperate agroforestry systems: a review with examples from Costa Rica and southern Canada. Agric Ecosyst Environ 104(3):359–377

    Article  CAS  Google Scholar 

  • Onwosi CO, Igbokwe VC, Odimba JN, Eke IE, Nwankwoala MO, Iroh IN, Ezeogu LI (2017) Composting technology in waste stabilization: on the methods, challenges and future prospects. J Environ Manag 190:140–157

    Article  CAS  Google Scholar 

  • Oudart D, Robin P, Paillat JM, Paul E (2015) Modelling nitrogen and carbon interactions in composting of animal manure in naturally aerated piles. Waste Manag 46:588–598

    Article  CAS  PubMed  Google Scholar 

  • Pandey DN (2002) Carbon sequestration in agroforestry systems. Clim Policy 2(4):367–377

    Article  Google Scholar 

  • Patel SK, Singh A, Singh GS (2019) Food production through traditional agriculture: an urgent need to improve soil health by sustaining soil microbial diversity. Int J Curr Microbiol Appl Sci 8(1):183–196

    Article  Google Scholar 

  • Paul C, Weber M, Knoke T (2017) Agroforestry versus farm mosaicsystems: comparing land-use efficiency, economic returns and risks under climate change effects. Sci Total Environ 587:22–35

    Article  PubMed  CAS  Google Scholar 

  • Pedraza V, Perea F, Saavedra M, Fuentes M, Castilla A, Alca’ntara C (2015) Winter cover crops as sustainable alternative to soil management system of a traditional durum wheat-sunflower rotation in Southern Spain. Procedia Environ Sci 29:95–96

    Article  Google Scholar 

  • Perroni E (2017) Five indigenous farming practices enhancing food security. Food Tank https://foodtank.com/news/2017/08/celebrating-international-day-of-the-worlds-indigenous-peoples/

    Google Scholar 

  • Pinto P, Long MEF, Pineiro G (2017) Including cover crops during fallow periods for increasing ecosystem services: is it possible in croplands of Southern South America? Agric Ecosyst Environ 248:48–57

    Article  Google Scholar 

  • Reis GL, Lana ÂMQ, Maurício RM, Lana RMQ, Machado RM, Borges I, Neto TQ (2010) Influence of trees on soil nutrient pools in a silvopastoral system in the Brazilian Savannah. Plant Soil 329(1-2):185–193

    Article  CAS  Google Scholar 

  • Robačer M, Canali S, Kristensen HL, Bavec F, Mlakar SG, Jakop M, Bavec M (2016) Cover crops in organic field vegetable production. Sci Hortic 208:104–110

    Google Scholar 

  • Shakeel A (2018) Traditional Agriculture and its impact on the environment. Jaran Josh 3–5. https://www.jagranjosh.com/general-knowledge/traditional-agriculture-and-its-impact-on-the-environment-1518096259-1

  • Shanin T (1976) Peasants and peasant societies. Hormonds worth, Pengiun Book Ltd

    Google Scholar 

  • Shava S, O’Donoghue R, Krasny ME, Zazu C (2009) Traditional food crops as a source of community resilience in Zimbabwe. Int J Afr Renaiss Stud 4(1):31–48

    Google Scholar 

  • Shiva V (1996) Agricultural biodiversity, intellectual propert rights and farmers' rights, Economic and Political Weekly, June - 22, pp 60–67

    Google Scholar 

  • Singh R, Singh GS (2017) Traditional agriculture: a climate-smart approach for sustainable food production. Energy Environ Sci 2(5):296–316. https://doi.org/10.1007/s40974-017-0074-7

    Google Scholar 

  • Swaminathan MS (1993) Science and famine avoidance strategies of independent India. In: Surendranath KV, Damodaran AK, Unnikrishnan SV (eds) For an Indian model. Essays in homage to - C. Achutha Menon, C. Achutha Menon Foundation, Trivandrum, pp 158–174

    Google Scholar 

  • Thomaz EL (2009) The influence of traditional steep land agricultural practices on runoff and soil loss. Agric Ecosyst Environ 130:23–30

    Article  Google Scholar 

  • Thomaz EL, Antoneli V, Doerr SH (2014) Effects of fire on the physicochemical properties of soil in a slash-and-burn agriculture. Catena 122(June 2019):209–215. https://doi.org/10.1016/j.catena.2014.06.016

    Article  CAS  Google Scholar 

  • Triberti L, Nastri A, Baldoni G (2016) Long-term effects of crop rotation, manure and mineral fertilisation on carbon sequestration and soil fertility. Eur J Agron 74:47–55

    Article  CAS  Google Scholar 

  • Verchot LV, Van Noordwijk M, Kandji S, Tomich T, Ong C, Albrecht A, Palm C (2007) Climate change: linking adaptation and mitigation through agroforestry. Mitig Adapt Strat Glob Change 12(5):901–918

    Article  Google Scholar 

  • Wang Q, Li Y, Alva A (2010) Cropping systems to improve carbon sequestration for mitigation of climate change. J Environ Prot 1(03):207

    Article  CAS  Google Scholar 

  • Yadav H, Fatima R, Sharma A, Mathur S (2017) Enhancement of applicability of rock phosphate in alkaline soils by organic compost. Appl Soil Ecol 113:80–85

    Article  Google Scholar 

  • Yang C, Yang L, Yang Y, Ouyang Z (2004) Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. Agric Water Manag 70(1):67–81

    Article  Google Scholar 

  • Zhang QC, Shamsi IH, Xu DT, Wang GH, Lin XY, Jilani G, Hussain N, Chaudhry AN (2012) Chemical fertilizer and organic manure inputs in soil exhibit a vice versa pattern of microbial community structure. Appl Soil Ecol 57:1–8

    Article  Google Scholar 

  • Zomer RJ, Neufeldt H, Xu J, Ahrends A, Bossio D, Trabucco A, van Noordwijk M, Wang M (2016) Global tree cover and biomass carbon on agricultural land: the contribution of agroforestry to global and national carbon budgets. Sci Rep 6:29987. https://doi.org/10.1038/srep29987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mudasir Rashid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hamadani, H. et al. (2021). Traditional Farming Practices and Its Consequences. In: Dar, G.H., Bhat, R.A., Mehmood, M.A., Hakeem, K.R. (eds) Microbiota and Biofertilizers, Vol 2. Springer, Cham. https://doi.org/10.1007/978-3-030-61010-4_6

Download citation

Publish with us

Policies and ethics