Skip to main content
Log in

On the use of the IAST method for gas separation studies in porous materials with gate-opening behavior

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Highly flexible nanoporous materials, exhibiting for instance gate opening or breathing behavior, are often presented as candidates for separation processes due to their supposed high adsorption selectivity. But this view, based on “classical” considerations of rigid materials and the use of the Ideal Adsorbed Solution Theory (IAST), does not necessarily hold in the presence of framework deformations. Here, we revisit some results from the published literature and show how proper inclusion of framework flexibility in the osmotic thermodynamic ensemble drastically changes the conclusions, in contrast to what intuition and standard IAST would yield. In all cases, the IAST method does not reproduce the gate-opening behavior in the adsorption of mixtures, and may overestimates the selectivity by up to two orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Banerjee, Debasis, Liu, Jun, Thallapally, Praveen K.: Separation of C2 hydrocarbons by porous materials: metal organic frameworks as platform. Comments Inorg. Chem. 35(1), 18–38 (2015)

    Article  CAS  Google Scholar 

  • Bourrelly, S., et al.: Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL- 47. J. Am. Chem. Soc. 127, 13519–13521 (2005)

    Article  CAS  Google Scholar 

  • Brandani, S., Mangano, E., Sarkisov, L.: Net, excess and absolute adsorption and adsorption of helium. Adsorption 22(2), 261–276 (2016)

    Article  CAS  Google Scholar 

  • Coudert, F.-X., et al.: Thermodynamics of guest-induced structural transitions in hybrid organic-inorganic frameworks. J. Am. Chem. Soc. 130(43), 14294–14302 (2008)

    Article  CAS  Google Scholar 

  • Coudert, F.-X., et al.: Prediction of breathing and gate-opening transitions upon binary mixture adsorption in metal-organic frameworks. J. Am. Chem. Soc. 131(32), 11329–11331 (2009)

    Article  CAS  Google Scholar 

  • Coudert, F.-X.: The osmotic framework adsorbed solution theory: predicting mixture coadsorption in flexible nanoporous materials. Phys. Chem. Chem. Phys. 12(36), 10904 (2010)

    Article  CAS  Google Scholar 

  • Coudert, F.-X.: Responsive metal-organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 27(6), 1905–1916 (2015)

    Article  CAS  Google Scholar 

  • Escobedo, F.A.: Novel pseudoensembles for simulation of multicomponent phase equilibria. J. Chem. Phys. 108(21), 8761 (1998)

    Article  CAS  Google Scholar 

  • Foo, M.L.: An adsorbate discriminatory gate effect in a flexible porous coordination polymer for selective adsorption of CO2 over C2H2. J. Am. Chem. Soc. 138(9), 3022–3030 (2016)

    Article  CAS  Google Scholar 

  • Gücüyener, C., et al.: Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. J. Am. Chem. Soc. 132(50), 17704–17706 (2010)

    Article  Google Scholar 

  • Hoffmann, H.C., et al.: High-pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metal-organic framework Ni2 (2,6-ndc)2 (dabco) (DUT-8(Ni)). J. Am. Chem. Soc. 133(22), 8681–8690 (2011)

    Article  CAS  Google Scholar 

  • Horike, S., Shimomura, S., Kitagawa, S.: Soft porous crystals. Nat. Chem. 1(9), 695–704 (2009)

    Article  CAS  Google Scholar 

  • Inubushi, Y., et al.: Modification of flexible part in Cu\(^{2+}\) interdigitated framework for CH\(_4\)/CO\(_2\) separation. Chem. Comm. 46(48), 9229 (2010)

    Article  CAS  Google Scholar 

  • Joarder, B., et al.: Guest-responsive function of a dynamic metal-organic framework with a \(\pi\) Lewis acidic pore surface. Chem. Eur. J. 20(47), 15303–15308 (2014)

    Article  CAS  Google Scholar 

  • Kitaura, R., et al.: Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angew. Chem. Int. Ed. 42(4), 428–431 (2003)

    Article  CAS  Google Scholar 

  • Lan, A., et al.: RPM3: a multifunctional microporous MOF with recyclable framework and high H\(_2\) binding energy. Inorg. Chem. 48(15), 7165–7173 (2009)

    Article  CAS  Google Scholar 

  • Li, L.: Exploiting the gate opening effect in a flexible MOF for selective adsorption of propyne from C1/C2/C3 hydrocarbons. J. Mater. Chem. A 4(3), 751–755 (2016)

    Article  CAS  Google Scholar 

  • Li, D., Kaneko, K.: Hydrogen bond-regulated microporous nature of copper complex-assembled microcrystals. Chem. Phys. Lett. 335(1–2), 50–56 (2001)

    Article  CAS  Google Scholar 

  • Mehta, M., Kofke, D.A.: Coexistence diagrams of mixtures by molecular simulation. Chem. Eng. Sci. 49(16), 2633–2645 (1994)

    Article  CAS  Google Scholar 

  • Mukherjee, S., et al.: Framework-flexibility driven selective sorption of p-Xylene over other isomers by a dynamic metal-organic framework. Sci. Rep. 4, 5761 (2014)

    Article  CAS  Google Scholar 

  • Mukherjee, S., et al.: Exploiting framework flexibility of a metal-organic framework for selective adsorption of styrene over ethylbenzene. Inorg. Chem. 54(9), 4403–4408 (2015)

    Article  CAS  Google Scholar 

  • Myers, A.L., Monson, P.A.: Physical adsorption of gases: the case for absolute adsorption as the basis for thermodynamic analysis. Adsorption 20(4), 591–622 (2014)

    Article  CAS  Google Scholar 

  • Myers, A.L., Prausnitz, J.M.: Thermodynamics mixed-gas adsorption. AIChE J. 11(1), 121–127 (1965)

    Article  CAS  Google Scholar 

  • Nijem, N., et al.: Tuning the gate opening pressure of metal-organic frameworks (MOFs) for the selective separation of hydrocarbons. J. Am. Chem. Soc. 134(37), 15201–15204 (2012)

    Article  CAS  Google Scholar 

  • Ortiz, A.U., et al.: Predicting mixture coadsorption in soft porous crystals: experimental and theoretical study of CO\(_2\)/CH\(_4\) in MIL-53(Al). Langmuir 28(1), 494–498 (2012)

    Article  CAS  Google Scholar 

  • Sanda, S., Parshamoni, S., Konar, S.: Third-generation breathing metal-organic framework with selective, stepwise, reversible, and hysteretic adsorption properties. Inorg. Chem. 52(22), 12866–12868 (2013)

    Article  CAS  Google Scholar 

  • Serre, C.: Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or Cr. J. Am. Chem. Soc. 124(45), 13519–13526 (2002)

    Article  CAS  Google Scholar 

  • Simon, C.M., Smit, B., Haranczyk, M.: pyIAST: ideal adsorbed solution theory (IAST) python package. Comput. Phys. Comm. 200, 364–380 (2016)

    Article  CAS  Google Scholar 

  • Suwanayuen, S., Danner, R.P.: A gas adsorption isotherm equation based on vacancy solution theory. AIChE J. 26, 68–76 (1980)

    Article  CAS  Google Scholar 

  • Sweatman, M.B., Quirke, N.: Predicting the adsorption of gas mixtures: adsorbed solution theory versus classical density functional theory. Langmuir 18, 10443–10454 (2002)

    Article  CAS  Google Scholar 

  • Tanaka, D.: Kinetic gate-opening process in a flexible porous coordination polymer. Angew. Chem. Int. Ed. 47(21), 3914–3918 (2008)

    Article  CAS  Google Scholar 

  • van Assche, T.R.C., Baron, G.V., Denayer, J.F.M.: Molecular separations with breathing metal-organic frameworks: modelling packed bed adsorbers. Dalton Trans. 45(10), 4416–4430 (2016)

    Article  Google Scholar 

  • Yang, R.T.: Gas separation by adsorption processes. Imperial College Press, London (1997)

    Book  Google Scholar 

  • Zang, J., Nair, S., Sholl, D.S.: Osmotic ensemble methods for predicting adsorption-induced structural transitions in nanoporous materials using molecular simulations. J. Chem. Phys. 134(18), 184103 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François-Xavier Coudert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 370 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraux, G., Boutin, A., Fuchs, A.H. et al. On the use of the IAST method for gas separation studies in porous materials with gate-opening behavior. Adsorption 24, 233–241 (2018). https://doi.org/10.1007/s10450-018-9942-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-018-9942-5

Keywords

Navigation