Skip to main content

Advertisement

Log in

Modal Analysis of the Ancillary During Femoral Stem Insertion: A Study on Bone Mimicking Phantoms

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The femoral stem primary stability achieved by the impaction of an ancillary during its insertion is an important factor of success in cementless surgery. However, surgeons still rely on their proprioception, making the process highly subjective. The use of Experimental Modal Analysis (EMA) without sensor nor probe fixation on the implant or on the bone is a promising non destructive approach to determine the femoral stem stability. The aim of this study is to investigate whether EMA performed directly on the ancillary could be used to monitor the femoral stem insertion into the bone. To do so, a cementless femoral stem was inserted into 10 bone phantoms of human femurs and EMA was carried out on the ancillary using a dedicated impact hammer for each insertion step. Two bending modes could be identified in the frequency range [400–8000] Hz for which the resonance frequency was shown to be sensitive to the insertion step and to the bone-implant interface properties. A significant correlation was obtained between the two modal frequencies and the implant insertion depth (R2 = 0.95 ± 0.04 and R2 = 0.94 ± 0.06). This study opens new paths towards the development of noninvasive vibration based evaluation methods to monitor cementless implant insertion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Albini Lomami, H., C. Damour, G. Rosi, A.-S. Poudrel, A. Dubory, C.-H. Flouzat-Lachaniette, and G. Haiat. Ex vivo estimation of cementless femoral stem stability using an instrumented hammer. Clin. Biomech. 76:105006, 2020.

    Article  Google Scholar 

  2. Allemang, R. The modal assurance criterion—twenty years of use and abuse. Sound Vib. 37:14–23, 2003.

    Google Scholar 

  3. Alshuhri, A. A., T. P. Holsgrove, A. W. Miles, and J. L. Cunningham. Development of a non-invasive diagnostic technique for acetabular component loosening in total hip replacements. Med. Eng. Phys. 37:739–745, 2015.

    Article  Google Scholar 

  4. Bosc, R., A. Tijou, G. Rosi, V.-H. Nguyen, J.-P. Meningaud, P. Hernigou, C.-H. Flouzat-Lachaniette, and G. Haiat. Influence of soft tissue in the assessment of the primary fixation of acetabular cup implants using impact analyses. Clin. Biomech. 55:7–13, 2018.

    Article  Google Scholar 

  5. Cachão, J. H., M. P. Soares Dos Santos, R. Bernardo, A. Ramos, R. Bader, J. A. F. Ferreira, A. Torres Marques, and J. A. O. Simões. Altering the course of technologies to monitor loosening states of endoprosthetic implants. Sensors (Basel). 20:104, 2019.

    Article  Google Scholar 

  6. Corbett, K. L., E. Losina, A. A. Nti, J. J. Z. Prokopetz, and J. N. Katz. Population-based rates of revision of primary total hip arthroplasty: a systematic review. PLoS ONE. 5:e13520, 2010.

    Article  Google Scholar 

  7. Dubory, A., G. Rosi, A. Tijou, H. A. Lomami, C.-H. Flouzat-Lachaniette, and G. Haïat. A cadaveric validation of a method based on impact analysis to monitor the femoral stem insertion. J Mech Behav Biomed Mater. 103:103535, 2019.

    Article  Google Scholar 

  8. Eggers, G., M. Rieker, B. Kress, J. Fiebach, H. Dickhaus, and S. Hassfeld. Artefacts in magnetic resonance imaging caused by dental material. MAGMA. 18:103–111, 2005.

    Article  Google Scholar 

  9. Ewins, D. J. Modal Testing: Theory, Practice, and Application. Baldock: Research Studies Press, 2000.

    Google Scholar 

  10. Fitzgerald, R. H. J., G. W. Brindley, and B. F. Kavanagh. The uncemented total hip arthroplasty: intraoperative femoral fractures. Clin. Orthop. Relat. Res.®. 235:61–66, 1988.

    Google Scholar 

  11. Georgiou, A. P., and J. L. Cunningham. Accurate diagnosis of hip prosthesis loosening using a vibrational technique. Clin. Biomech. 16:315–323, 2001.

    Article  CAS  Google Scholar 

  12. Goossens, Q., S. Leuridan, P. Henyš, J. Roosen, L. Pastrav, M. Mulier, W. Desmet, K. Denis, and J. Vander Sloten. Development of an acoustic measurement protocol to monitor acetabular implant fixation in cementless total hip arthroplasty: a preliminary study. Med. Eng. Phys. 49:28–38, 2017.

    Article  Google Scholar 

  13. Goossens, Q., L. Pastrav, J. Roosen, M. Mulier, W. Desmet, J. VanderSloten, and K. Denis. Acoustic analysis to monitor implant seating and early detect fractures in Cementless Tha: an in vivo study. J. Orthop. Res. 2020. https://doi.org/10.1002/jor.24837.

    Article  PubMed  Google Scholar 

  14. Hailer, N. P., G. Garellick, and J. Kärrholm. Uncemented and cemented primary total hip arthroplasty in the Swedish Hip Arthroplasty Register. Acta Orthop. 81:34–41, 2010.

    Article  Google Scholar 

  15. Henyš, P., and L. Čapek. Material model of pelvic bone based on modal analysis: a study on the composite bone. Biomech. Model Mechanobiol. 16:363–373, 2017.

    Article  Google Scholar 

  16. Henyš, P., and L. Čapek. Impact force, polar gap and modal parameters predict acetabular cup fixation: a study on a composite bone. Ann. Biomed. Eng. 46:590–604, 2018.

    Article  Google Scholar 

  17. Henys, P., L. Capek, J. Fencl, and E. Prochazka. Evaluation of acetabular cup initial fixation by using resonance frequency principle. Proc. Inst. Mech. Eng. H. 229:3–8, 2015.

    Article  Google Scholar 

  18. Henyš, P., S. Leuridan, Q. Goossens, M. Mulier, L. Pastrav, W. Desmet, J. V. Sloten, K. Denis, and L. Čapek. Modal frequency and shape curvature as a measure of implant fixation: a computer study on the acetabular cup. Med. Eng. Phys. 60:30–38, 2018.

    Article  Google Scholar 

  19. Hériveaux, Y., V.-H. Nguyen, D. Geiger, and G. Haiat. Elastography of the bone-implant interface. Sci. Rep. 9:14163, 2019.

    Article  Google Scholar 

  20. Khanuja, H. S., J. J. Vakil, M. S. Goddard, and M. A. Mont. Cementless femoral fixation in total hip arthroplasty. J. Bone Jt. Surg. 93:500–509, 2011.

    Article  Google Scholar 

  21. Kikuchi, S., K. Mikami, D. Nakashima, T. Kitamura, N. Hasegawa, M. Nishikino, A. Kanaji, M. Nakamura, and T. Nagura. Laser resonance frequency analysis: a novel measurement approach to evaluate acetabular cup stability during surgery. Sensors (Basel). 19:4876, 2019.

    Article  Google Scholar 

  22. Kim, Y. Y., J.-C. Hong, and N.-Y. Lee. Frequency response function estimation via a robust wavelet de-noising method. J. Sound Vib. 244:635–649, 2001.

    Article  Google Scholar 

  23. Kurtz, S. M., E. Lau, K. Ong, K. Zhao, M. Kelly, and K. J. Bozic. Future young patient demand for primary and revision joint replacement: national projections from 2010 to 2030. Clin. Orthop. Relat. Res. 467:2606–2612, 2009.

    Article  Google Scholar 

  24. Lannocca, M., E. Varini, A. Cappello, L. Cristofolini, and E. Bialoblocka. Intra-operative evaluation of cementless hip implant stability: a prototype device based on vibration analysis. Med. Eng. Phys. 29:886–894, 2007.

    Article  Google Scholar 

  25. Leuridan, S., Q. Goossens, L. Pastrav, J. Roosen, M. Mulier, K. Denis, W. Desmet, and J. V. Sloten. Determination of replicate composite bone material properties using modal analysis. J. Mech. Behav. Biomed. Mater. 66:12–18, 2017.

    Article  CAS  Google Scholar 

  26. Mathieu, V., A. Michel, C.-H. Flouzat Lachaniette, A. Poignard, P. Hernigou, J. Allain, and G. Haïat. Variation of the impact duration during the in vitro insertion of acetabular cup implants. Med. Eng. Phys. 35:1558–1563, 2013.

    Article  Google Scholar 

  27. Michel, A., R. Bosc, J.-P. Meningaud, P. Hernigou, and G. Haiat. Assessing the acetabular cup implant primary stability by impact analyses: a cadaveric study. PLoS ONE. 11:e0166778, 2016.

    Article  Google Scholar 

  28. Michel, A., V.-H. Nguyen, R. Bosc, R. Vayron, P. Hernigou, S. Naili, and G. Haiat. Finite element model of the impaction of a press-fitted acetabular cup. Med. Biol. Eng. Comput. 55:781–791, 2017.

    Article  Google Scholar 

  29. Mohammed R. A.-K., U. Hansen, and R. Klabunde. Finite element modelling of primary hip stem stability: the effect of interference fit - ScienceDirectat https://www.sciencedirect.com/science/article/pii/S0021929007004381.

  30. Morohashi, I., H. Iwase, A. Kanda, T. Sato, Y. Homma, A. Mogami, O. Obayashi, and K. Kaneko. Acoustic pattern evaluation during cementless hip arthroplasty surgery may be a new method for predicting complications. SICOT J. 3:13, 2017.

    Article  Google Scholar 

  31. Nakashima, D., K. Ishii, M. Matsumoto, M. Nakamura, and T. Nagura. A study on the use of the Osstell apparatus to evaluate pedicle screw stability: An in-vitro study using micro-CT. PLoS ONE. 13:e0199362, 2018. https://doi.org/10.1371/journal.pone.0199362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pastrav, L. C., S. V. N. Jaecques, M. Mulier, and G. Van Der Perre. Detection of the insertion end point of cementless hip prostheses using the comparison between successive frequency response functions. J Appl. Biomater. Biomech. 6:23–29, 2008.

    CAS  PubMed  Google Scholar 

  33. Pérez, M. A., and B. Seral-García. A finite element analysis of the vibration behaviour of a cementless hip system. Comput. Methods Biomech. Biomed. Eng. 16:1022–1031, 2013.

    Article  Google Scholar 

  34. Pilliar, R. M., J. M. Lee, and C. Maniatopoulos. Observations on the effect of movement on bone ingrowth into porous-surfaced implants. Clin. Orthop. Relat. Res. 208:108–113, 1986.

    Article  Google Scholar 

  35. Pivec, R., A. J. Johnson, S. C. Mears, and M. A. Mont. Hip arthroplasty. Lancet. 380:1768–1777, 2012.

    Article  Google Scholar 

  36. Qi, G., W. P. Mouchon, and T. E. Tan. How much can a vibrational diagnostic tool reveal in total hip arthroplasty loosening? Clin. Biomech. 18:444–458, 2003.

    Article  Google Scholar 

  37. Richardson, M. H., and D. L. Formenti. Parameter Estimation from Frequency Response Measurements using Rational Fraction Polynomials. 15, 1982.

  38. Schmalzried, T. P., L. M. Kwong, M. Jasty, R. C. Sedlacek, T. C. Haire, D. O. O’Connor, C. R. Bragdon, J. M. Kabo, A. J. Malcolm, and W. H. Harris. The mechanism of loosening of cemented acetabular components in total hip arthroplasty. Analysis of specimens retrieved at autopsy. Clin. Orthop. Relat. Res. 274:60–78, 1992.

    Article  Google Scholar 

  39. Sloan, M., A. Premkumar, and N. P. Sheth. Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030. J. Bone Jt. Surg. Am. 100:1455–1460, 2018.

    Article  Google Scholar 

  40. Tijou, A., G. Rosi, R. Vayron, H. A. Lomami, P. Hernigou, C.-H. Flouzat-Lachaniette, and G. Haïat. Monitoring cementless femoral stem insertion by impact analyses: an in vitro study. J. Mech. Behav. Biomed. Mater. 88:102–108, 2018.

    Article  Google Scholar 

  41. Ulrich, S. D., T. M. Seyler, D. Bennett, R. E. Delanois, K. J. Saleh, I. Thongtrangan, M. Kuskowski, E. Y. Cheng, P. F. Sharkey, J. Parvizi, J. B. Stiehl, and M. A. Mont. Total hip arthroplasties: What are the reasons for revision? Int Orthop. 32:597–604, 2008.

    Article  Google Scholar 

  42. Whitwell, G., C. L. Brockett, S. Young, M. Stone, and T. D. Stewart. Spectral analysis of the sound produced during femoral broaching and implant insertion in uncemented total hip arthroplasty. Proc Inst Mech Eng H. 227:175–180, 2013.

    Article  Google Scholar 

  43. Wong, A. S., A. M. R. New, A. Ritchie, and M. Taylor. Influence of an Interference-fit on the strain distribution in the implanted proximal femur. 3.

  44. Yousefsani, S. A., H. Dejnabadi, O. Guyen, and K. Aminian. A vibrational technique for in vitro intraoperative prosthesis fixation monitoring. IEEE Trans. Biomed. Eng. 67:2953–2964, 2020.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Hugues Albini Lomami to assist in preparing specimens and Léa Terriac for help in gathering experimental results.

Funding

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program, grant agreement No 682001, project ERC (Consolidator Grant 2015 BoneImplant).

Conflict of interest

There was no conflict of interest for none of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Haiat.

Additional information

Associate Editor Stefan M. Duma oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poudrel, AS., Rosi, G., Nguyen, VH. et al. Modal Analysis of the Ancillary During Femoral Stem Insertion: A Study on Bone Mimicking Phantoms. Ann Biomed Eng 50, 16–28 (2022). https://doi.org/10.1007/s10439-021-02887-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02887-9

Keywords

Navigation