Skip to main content
Log in

Airflow Simulations in Infant, Child, and Adult Pulmonary Conducting Airways

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A Commentary to this article was published on 18 September 2019

Abstract

The airway structure continuously evolves from birth to adulthood, influencing airflow dynamics and respiratory mechanics. We currently know very little about how airflow patterns change throughout early life and its impact on airway resistance, namely because of experimental limitations. To uncover differences in respiratory dynamics between age groups, we performed subject-specific airflow simulations in an infant, child, and adult conducting airways. Airflow throughout the respiration cycle was calculated by coupling image-based models of the conducting airways to the global respiratory mechanics, where flow was driven by a pressure differential. Trachea diameter was 19, 9, and 4.5 mm for the adult (36 years, female), child (6 years, male), and infant (0.25 years, female), respectively. Mean Reynolds number within the trachea was nearly the same for each subject (1100) and Womersley number was above unity for all three subjects and largest for the adult, highlighting the significance of transient effects. In general, air speeds and airway resistances within the conducting airways were inversely correlated with age; the 3D pressure drop was highest in the infant model. These simulations provide new insight into age-dependent flow dynamics throughout the respiration cycle within subject-specific airways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Amirav, I., and M. T. Newhouse. Aerosol therapy in infants and toddlers: past, present and future. Expert Rev. Respir. Med. 2(5):597–605, 2008.

    Article  PubMed  Google Scholar 

  2. Attinger, E., R. G. Monroe, and M. S. Segal. The mechanics of breathing in different body positions. I. In normal subjects. J. Clin. Investig., 35(8):904–911, 1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Burri, P. H. Structural aspects of postnatal lung development---Alveolar formation and growth. Biol. Neonate, 89(4):313–322, 2006.

    Article  PubMed  Google Scholar 

  4. Carrigy, N. B., C. A. Ruzycki, L. Golshahi, and W. H. Finlay. Pediatric in vitro and in silico models of deposition via oral and nasal inhalation. J. Aerosol Med. Pulm. Drug Deliv., 27(3):149–169, 2014.

    Article  PubMed  Google Scholar 

  5. Choi, J., M. H. Tawhai, E. A. Hoffman, and C.-L. L. Lin. On intra- and intersubject variabilities of airflow in the human lungs. Phys. Fluids, 21(10):101901-1–17, 2009.

  6. Comer, J. K., C. Kleinstreuer, C. S. Kim. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 2. Aerosol transport and deposition. J. Fluid Mech., 435:55–80, 2001.

    Google Scholar 

  7. Comerford, A., C. Förster, and W. A. Wall. Structured tree impedance outflow boundary conditions for 3D lung simulation. J. Biomech. Eng., 132(8):081002:1–10, 2010.

  8. Croteau, J. R., and C. D. Cook. Volume-pressure and length-tension measurements in human tracheal and bronchial segments. J. Appl. Physiol., 16:170–172, 1961.

    Article  CAS  PubMed  Google Scholar 

  9. D’Angelo, E., E. Calderini, G. Torri, F. M. Robatto, D. Bono, and J. Milic-Emili. Respiratory mechanics in anesthetized paralyzed humans: effects of flow, volume, and time. J. Appl. Physiol., 67(6):2556–2564, 1989.

    Article  PubMed  Google Scholar 

  10. De Backer, J. W., W. G. Vos, C. D. Gorlé, P. Germonpré, B. Partoens, F. L. Wuyts, P. M. Parizel, and W. De Backer. Flow analyses in the lower airways: patient-specific model and boundary conditions. Med. Eng. Phys., 30(7):872–879, 2008.

    Article  PubMed  Google Scholar 

  11. Dubois, A. B., S. Y. Botelho, and J. H. Comroe. A new method for measuring airway resistance in man using a body plethysmograph: values in normal subjects and in patients with respiratory disease. J. Clin. Investig., 35(3):327–335, 1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Esmaily Moghadam, M., Y. Basikevs, and A. L. Marsden. A new preconditioning technique for implicitly coupled multidomain simulations with applications to hemodynamics. Comput. Mech., 52:1141–1152, 2013.

    Article  Google Scholar 

  13. Esmaily Moghadam, M., Y. Bazilevs, T.-Y. Hsia, I. E. Vignon-Clementel, A. L. Marsden, and Alliance (MOCHA). A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput. Mech., 48(3):277–291, 2011.

    Article  Google Scholar 

  14. Esmaily Moghadam, M., I. E. Vignon-Clementel, R. Figliola, and A. L. Marsden. A modular numerical method for implicit 0D/3D coupling in cardiovascular finite element simulations. J. Comput. Phys., 244:63–79, 2013.

    Article  Google Scholar 

  15. Ginsberg, G., B. Foos, R. B. Dzubow, and M. Firestone. Options for incorporating children’s inhaled dose into human health risk assessment. Inhal. Toxicol., 22(8):627–647, 2010.

    Article  CAS  PubMed  Google Scholar 

  16. Godfrey, S., P. L. Kamburoff, and J. R. Nairn. Spirometry, lung volumes and airway resistance in normal children aged 5 to 18 years. Br. J. Dis. Chest, 64(1):15–24, 1970.

    Article  CAS  PubMed  Google Scholar 

  17. Hall, G. L., Z. Hantos, F. Petak, J. H. Wildhaber, K. Tiller, P. R. Burton, and P. D. Sly. Airway and respiratory tissue mechanics in normal infants. Am. J. Respir. Crit. Care Med., 162:1397–1402, 2000.

    Article  CAS  PubMed  Google Scholar 

  18. Hofmann, W. Mathematical model for the postnatal growth of the human lung. Respir. Physiol., 49:115–129, 1982.

    Article  CAS  PubMed  Google Scholar 

  19. Horsfield, K., G. Dart, D. E. Olson, G. F. Filley, and G. Cumming. Models of the human bronchial tree. J. Appl. Physiol., 31(2):207–217, 1971.

    Article  CAS  PubMed  Google Scholar 

  20. Horsfield, K., W. I. Gordon, W. Kemp, and S. Phillips. Growth of the bronchial tree in man. Thorax, 42:383–388, 1987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kaczka, D. W., K. R. Lutchen, and Z. Hantos. Emergent behavior of regional heterogeneity in the lung and its effects on respiratory impedance. J. Appl. Physiol., 110(5):1473–1481, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kleinstreuer C., and Z. Zhang. Airflow and particle transport in the human respiratory system. Annu. Rev. Fluid Mech., 42(1):301–334, 2010.

    Article  Google Scholar 

  23. Koullapis, P. G., S. C. Kassinos, M. P. Bivolarova, and A. K. Melikov. Particle deposition in a realistic geometry of the human conducting airways: Effects of inlet velocity profile, inhalation flowrate and electrostatic charge. J. Biomech., 49:2201–2212, 2016.

    Article  CAS  PubMed  Google Scholar 

  24. Kruger, S. J., S. K. Nagle, M. J. Couch, Y. Ohno, M. Albert, and S. B. Fain. Functional imaging of the lungs with gas agents. J. Magn. Reson. Imaging, 43(2):295–315, 2016.

    Article  PubMed  Google Scholar 

  25. Kuprat, A. P., S. Kabilan, J. P. Carson, R. A. Corley, and D. R. Einstein. A bidirectional coupling procedure applied to multiscale respiratory modeling. J. Comput. Phys., 244:148–167, 2013.

    Article  Google Scholar 

  26. Lanteri C. J., and P. D. Sly. Changes in respiratory mechanics with age. J. Appl. Physiol., 74(1):369–378, 1993.

    Article  CAS  PubMed  Google Scholar 

  27. Ma B., and K. R. Lutchen. An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics. Ann. Biomed. Eng., 34(11):1691–1704, 2006.

    Article  PubMed  Google Scholar 

  28. Ma, B., and K. R. Lutchen. CFD simulation of aerosol deposition in an anatomically based human large-medium airway model. Ann. Biomed. Eng., 37(2):271–85, 2009.

    Article  PubMed  Google Scholar 

  29. Ménache, M. G., W. Hofmann, B. Ashgarian, and F. J. Miller. Airway geometry models of children’s lungs for use in dosimetry modeling. Inhal. Toxicol., 20(2):101–126, 2008.

    Article  PubMed  Google Scholar 

  30. Miyawaki, S., S. Choi, E. A. Hoffman, and C. L. Lin. A 4DCT imaging-based breathing lung model with relative hysteresis. J. Comput. Phys., 326:76–90, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Morris, P. D., A. Narracott, H. von Tengg-Kobligk, D. A. Silva Soto, S. Hsiao, A. Lungu, P. Evans, N. W. Bressloff, P. V. Lawford, D. R. Hose, and J. P. Gunn. Computational fluid dynamics modelling in cardiovascular medicine. Heart, 102:18–28, 2016.

    Article  PubMed  Google Scholar 

  32. Oakes, J. M., A. L. Marsden, C. Grandmont, C. Darquenne, and I. E. Vignon-Clementel. Distribution of aerosolized particles in healthy and emphysematous rat lungs: comparison between experimental and numerical studies. J. Biomech., 48(6):1147–1157, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Oakes, J. M., A. L. Marsden, C. Grandmont, S. C. Shadden, C. Darquenne, and I. E. Vignon-Clementel. Airflow and particle deposition simulations in health and emphysema: from in vivo to in silico animal experiments. Ann. Biomed. Eng., 42(4):899–914, 2014.

    Article  PubMed  Google Scholar 

  34. Oakes, J. M., M. Scadeng, E. C. Breen, A. L. Marsden, and C. Darquenne. Rat airway morhometry measured from in-situ MRI-based geometric models. J. Appl. Physiol., 112:1921–1931, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Oakes, J. M., S. C. Shadden, C. Grandmont, and I. E. Vignon-clementel. Aerosol transport throughout inspiration and expiration in the pulmonary airways. Int. J. Numer. Method Biomed. Eng., e2847, 2017.

  36. Pedley, T. J., R. C. Schroter, and M. F. Sudlow. The prediction of pressure drop and variation of resistance within the human bronchial airways. Respir. Physiol., 9(3):387–405, 1970.

    Article  CAS  PubMed  Google Scholar 

  37. Persak, S. C., S. Sin, J. M. McDonough, R. Arens, and D. M. Wootton. Noninvasive estimation of pharyngeal airway resistance and compliance in children based on volume-gated dynamic MRI and computational fluid dynamics. J. Appl. Physiol., 111(6):1819–1827, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Phalen R. F., and M. J. Oldham. Methods for modeling particle deposition as a function of age. Respir. Physiol., 128:119–130, 2001.

    Article  CAS  PubMed  Google Scholar 

  39. Phalen, R. F., M. J. Oldham, C. B. Beaucage, T. Timothy Crocker, and J. D. Mortensen. Postnatal enlargement of human tracheobronchial airways and implications for particle deposition. Anat. Rec., 212:368–380, 1985.

    Article  CAS  PubMed  Google Scholar 

  40. Sá, R. C., M. V. Cronin, A. C. Henderson, S. Holverda, R. J. Theilmann, T. J. Arai, D. J. Dubowitz, S. R. Hopkins, R. B. Buxton, and G. K. Prisk. Vertical distribution of specific ventilation in normal supine humans measured by oxygen-enhanced proton MRI. J. Appl. Physiol., 109(6):1950–1959, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tenenbaum-Katan, J., P. Hofemeier, and J. Sznitman. Computational models of inhalation therapy in early childhood: therapeutic aerosols in the developing acinus. J. Aerosol Med. Pulm. Drug Deliv., 29:288–298, 2016.

    Article  Google Scholar 

  42. Tian, G., P. W. Longest, G. Su, R. L. Walenga, and M. Hindle. Development of a stochastic individual path (SIP) model for predicting the tracheobronchial deposition of pharmaceutical aerosols: effects of transient inhalation and sampling the airways. J. Aerosol Sci., 42(11):781–799, 2011.

    Article  CAS  Google Scholar 

  43. Updegrove, A., N. M. Wilson, J. Merkow, H. Lan, A. L. Marsden, and S. C. Shadden. SimVascular: an open source pipeline for cardiovascular simulation. Ann. Biomed. Eng., 45:525–541, 2017.

    Article  PubMed  Google Scholar 

  44. Xi, J., A. Berlinski, Y. Zhou, B. Greenberg, and X. Ou. Breathing resistance and ultrafine particle deposition in nasal-laryngeal airways of a newborn, an infant, a child, and an adult. Ann. Biomed. Eng., 40(12):2579–2595, 2012.

    Article  PubMed  Google Scholar 

  45. Zhang, Z., and C. Kleinstreuer. Transient airflow structures and particle transport in a sequentially branching lung airway model. Phys. Fluids, 14(2):862–880, 2002.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an ALA Senior Research Training Grant and a University of California Presidential Postdoctoral Fellowship (J. M. Oakes). The authors would like to thank Dr. Jeff Feinstein at Stanford University for providing the thoracic CT images and examining the resulting 3D airway geometries. In addition, we would like to thank Dr. Weiguang Yang for assisting with the CT images and Adam Updegrove for providing modeling expertise. The authors acknowledge the Information Technology Services, Research Computing at Northeastern University for providing high performance computing resources.

Conflict of interest

The authors have no conflict of interest related to the work presented in this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica M. Oakes.

Additional information

Associate Editor K. A. Athanasiou oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oakes, J.M., Roth, S.C. & Shadden, S.C. Airflow Simulations in Infant, Child, and Adult Pulmonary Conducting Airways. Ann Biomed Eng 46, 498–512 (2018). https://doi.org/10.1007/s10439-017-1971-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1971-9

Keywords

Navigation