Skip to main content
Log in

An Anatomically Based Hybrid Computational Model of the Human Lung and its Application to Low Frequency Oscillatory Mechanics

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Lung input impedance measured via forced oscillation over low frequency range has been confirmed as sensitive to the degree and the heterogeneity of lung disease. In this study we advanced an image-based, multi-scale computational model for the human lung, which includes upper and central airways, small airways and alveoli tissue unit. A three-dimensional (3-D) realistic model of the upper airway (reconstructed from MRI images) was combined with an anatomically based 3-D model of the central airways (based on MDCT images) to form a 3-D model of the large airways (from mouth to generation 6, incomplete for generations 4–6). The small airway trees distal to the central branches were based on a hypothetical airway tree for a normal healthy lung. A constant phase viscoelastic model was assumed for the alveolar tissue unit. Unsteady airflows in the large airways were simulated based on computational fluid dynamics (CFD). An experimentally measured broadband forcing flow was applied at the mouth. The impedance of the small airways was computed based on a one-dimensional transmission line model. The computed overall dynamic lung resistance and elastance compared very well with experimental values. Results showed that unsteady 3-D simulation and realistic geometry of the upper and large airways up to generations 4–6 can provide a reasonably accurate estimation of lung input impedance. The impedance of the upper airway constitutes a significant part of the total lung input impedance. The resistance of the upper airway accounts for 45–70% of the total lung resistance at frequencies between 0 and 1 Hz, and 70–81% at frequencies between 1 and 8 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

Similar content being viewed by others

References

  1. Allen G.M., Shortall B.P., Gemci T., Corcoran T.E., Chigier N.A., 2004 Computational simulations of airflow in an in vitro model of the pediatric upper airways J. Biomech. Eng. 126:604–613

    Article  PubMed  CAS  Google Scholar 

  2. Bates J.H., Allen G.B., 2006 The estimation of lung mechanics parameters in the presence of pathology: a theoretical analysis Ann. Biomed. Eng. 34:384–392

    Article  PubMed  Google Scholar 

  3. Cebral J.R., Summers R.M., 2004 Tracheal and central bronchial aerodynamics using virtual bronchoscopy and computational fluid dynamics IEEE Trans. Med. Imaging 23:1021–1033

    Article  PubMed  Google Scholar 

  4. Fluent Manual Series 2005, FLUENT 6.2 User’s Guide. Fluent Inc., Lebanon, New Hampshire

    Google Scholar 

  5. Gillis H.L., Lutchen K.R., 1999 Airway remodeling in asthma amplifies heterogeneities in smooth muscle shortening causing hyperresponsiveness J. Appl. Physiol. 86:2001–2012

    Article  PubMed  CAS  Google Scholar 

  6. Gillis H.L., Lutchen K.R., 1999 How heterogeneous bronchoconstriction affects ventilation distribution in human lungs: a morphometric model Ann. Biomed. Eng. 27:14–22

    Article  PubMed  CAS  Google Scholar 

  7. Green A.S. 2004 Modelling of peak-flow wall shear stress in major airways of the lung J. Biomech. 37:661–667

    Article  PubMed  CAS  Google Scholar 

  8. Gunst S.J., Stropp J.Q., 1988 Pressure-Volume and Length-Stress Relationships in Canine Bronchi Invitro J. Appl. Physiol. 64:2522–2531

    PubMed  CAS  Google Scholar 

  9. Habib R.H., Suki B., Bates J.H., Jackson A.C., 1994 Serial distribution of airway mechanical properties in dogs: effects of histamine J. Appl. Physiol. 77:554–566

    PubMed  CAS  Google Scholar 

  10. Hantos Z., Daroczy B., Suki B., Nagy S., Fredberg J.J., 1992 Input impedance and peripheral inhomogeneity of dog lungs J. Appl. Physiol. 72:168–178

    Article  PubMed  CAS  Google Scholar 

  11. Horsfield K., Dart G., Olson D.E., Filley G.F., Cumming G., 1971 Models of the human bronchial tree J. Appl. Physiol. 31:207–217

    PubMed  CAS  Google Scholar 

  12. Kaczka D.W., Ingenito E.P., Suki B., Lutchen K.R., 1997 Partitioning airway and lung tissue resistances in humans: effects of bronchoconstriction J. Appl. Physiol. 82:1531–1541

    PubMed  CAS  Google Scholar 

  13. Keefe D.H. 1984 Acoustical Wave-Propagation in Cylindrical Ducts – Transmission-Line Parameter Approximations for Isothermal and Non-Isothermal Boundary-Conditions J. Acoust. Soc. Am. 75:58–62

    Article  Google Scholar 

  14. Kitaoka H., Takaki R., Suki B., 1999 A three-dimensional model of the human airway tree J. Appl. Physiol. 87:2207–2217

    PubMed  CAS  Google Scholar 

  15. Liu Y., So R.M., Zhang C.H., 2003 Modeling the bifurcating flow in an asymmetric human lung airway J. Biomech. 36:951–959

    Article  PubMed  CAS  Google Scholar 

  16. Lutchen K.R., Everett J.R., Jackson A.C., 1993 Impact of frequency range and input impedance on airway-tissue separation implied from transfer impedance J. Appl. Physiol. 74:1089–1099

    PubMed  CAS  Google Scholar 

  17. Lutchen K.R., Giurdanella C.A., Jackson A.C., 1990 Inability to separate airway from tissue properties by use of human respiratory input impedance J. Appl. Physiol. 68:2403–2412

    PubMed  CAS  Google Scholar 

  18. Lutchen K.R., Kaczka D.W., Suki B., Barnas G., Cevenini G., Barbini P., 1993 Low-frequency respiratory mechanics using ventilator-driven forced oscillations J. Appl. Physiol. 75:2549–2560

    PubMed  CAS  Google Scholar 

  19. Lutchen K.R., Yang K., Kaczka D.W., Suki B., 1993 Optimal ventilation waveforms for estimating low-frequency respiratory impedance J. Appl. Physiol. 75:478–488

    PubMed  CAS  Google Scholar 

  20. Nowak N., Kakade P.P., Annapragada A.V., 2003 Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs Ann. Biomed. Eng. 31:374–390

    Article  PubMed  Google Scholar 

  21. Olufsen M.S. 1999 Structured tree outflow condition for blood flow in larger systemic arteries Am. J. Physiol. 276:H257–H268

    PubMed  CAS  Google Scholar 

  22. Spann R.W., Hyatt R.E., 1971 Factors affecting upper airway resistance in conscious man J. Appl. Physiol. 31:708–712

    PubMed  CAS  Google Scholar 

  23. Suki B., Habib R.H., Jackson A.C., 1993 Wave propagation, input impedance, and wall mechanics of the calf trachea from 16 to 1,600 Hz J. Appl. Physiol. 75:2755–2766

    PubMed  CAS  Google Scholar 

  24. Taubin G. 1995 A Signal Processing Approach to Fair Surface Design Computer Graphics 29:351–358

    Google Scholar 

  25. Tawhai M.H., Hunter P., Tschirren J., Reinhardt J., McLennan G., Hoffman E.A., 2004 CT-based geometry analysis and finite element models of the human and ovine bronchial tree J. Appl. Physiol. 97:2310–2321

    Article  PubMed  Google Scholar 

  26. Tawhai M.H., Pullan A.J., Hunter P.J., 2000 Generation of an anatomically based three-dimensional model of the conducting airways Ann. Biomed. Eng. 28:793–802

    Article  Google Scholar 

  27. Taylor C.A., Draney M.T., 2004 Experimental and computational methods in cardiovascular fluid mechanics Ann. Rev. Fluid Mech. 36:197–231

    Article  Google Scholar 

  28. Teeter J.P., Saidel G.M., Fouke J.M., 1991 Contribution of large airway to the input impedance of the respiratory system J. Appl. Physiol. 70:650–657

    PubMed  CAS  Google Scholar 

  29. Tgavalekos N.T., Tawhai M., Harris R.S., Mush G., Vidal-Melo M., Venegas J.G., Lutchen K.R., 2005 Identifying airways responsible for heterogeneous ventilation and mechanical dysfunction in asthma: an image functional modeling approach J. Appl. Physiol. 99:2388–2397

    Article  PubMed  Google Scholar 

  30. Tgavalekos N.T., Venegas J.G., Suki B., Lutchen K.R., 2003 Relation between structure, function, and imaging in a three-dimensional model of the lung Ann. Biomed. Eng. 31:363–373

    Article  PubMed  Google Scholar 

  31. Tschirren J., Hoffman E.A., McLennan G., Sonka M., 2005 Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans IEEE Trans. Med. Imaging 24:1529–1539

    Article  PubMed  Google Scholar 

  32. Tschirren J., McLennan G., Palagyi K., Hoffman E.A., Sonka M., 2005 Matching and anatomical labeling of human airway tree IEEE Trans. Med. Imaging 24:1540–1547

    Article  PubMed  Google Scholar 

  33. van Ertbruggen C., Hirsch C., Paiva M., 2005 Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics J. Appl. Physiol. 98:970–980

    Article  PubMed  Google Scholar 

  34. Weibel E.R., 1963 Morphometry of the Human Lung. Academic Press, New York

    Google Scholar 

  35. Wheatley J.R., Amis T.C., Engel L.A., 1991 Nasal and oral airway pressure-flow relationships J. Appl. Physiol. 71:2317–2324

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Eric Hoffman at the University of Iowa and Dr. Merryn Tawhai at the University of Auckland for providing the central airway center line data and the hypothetical airway tree data for this study. Dr. Mitchell Albert and Mr. Yang-Sheng Tzeng at Brigham and Women’s hospital provided the upper airway images. The computation of airway tree impedance was based on the program developed by Nora Tgavalekos at Boston University. This work was supported by a grant from NHLBI RO1 HL076778. We also thank the Boston University Scientific Computing and Visualization group for allocating the supercomputer time to perform some of the simulations in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth R. Lutchen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, B., Lutchen, K.R. An Anatomically Based Hybrid Computational Model of the Human Lung and its Application to Low Frequency Oscillatory Mechanics. Ann Biomed Eng 34, 1691–1704 (2006). https://doi.org/10.1007/s10439-006-9184-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-006-9184-7

Keywords

Navigation