Skip to main content

Advertisement

Log in

State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering

  • Additive Manufacturing of Biomaterials, Tissues, and Organs
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

3D bioprinting is a group of rapidly growing techniques that allows building engineered tissue constructs with complex and hierarchical structures, mechanical and biological heterogeneity. It enables implementation of various bioinks through different printing mechanisms and precise deposition of cell and/or biomolecule laden biomaterials in predefined locations. This review briefly summarizes applicable bioink materials and various bioprinting techniques, and presents the recent advances in bioprinting of cardiovascular tissues, with focusing on vascularized constructs, myocardium and heart valve conduits. Current challenges and further perspectives are also discussed to help guide the bioink and bioprinter development, improve bioprinting strategies and direct future organ bioprinting and translational applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ali, M., E. Pages, A. Ducom, A. Fontaine, and F. Guillemot. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution. Biofabrication 6:045001, 2014.

    Article  PubMed  CAS  Google Scholar 

  2. Barannyk, O., and P. Oshkai. The influence of the aortic root geometry on flow characteristics of a prosthetic heart valve. J. Biomech. Eng. 137:051005, 2015.

    Article  PubMed  Google Scholar 

  3. Bertassoni, L. E., J. C. Cardoso, V. Manoharan, A. L. Cristino, N. S. Bhise, W. A. Araujo, P. Zorlutuna, N. E. Vrana, A. M. Ghaemmaghami, M. R. Dokmeci, and A. Khademhosseini. Direct-write bioprinting of cell-laden methacrylated gelatin hydrogels. Biofabrication 6:024105, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bertassoni, L. E., M. Cecconi, V. Manoharan, M. Nikkhah, J. Hjortnaes, A. L. Cristino, G. Barabaschi, D. Demarchi, M. R. Dokmeci, Y. Z. Yang, and A. Khademhosseini. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip 14:2202–2211, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Billiet, T., E. Gevaert, T. De Schryver, M. Cornelissen, and P. Dubruel. The 3d printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials 35:49–62, 2014.

    Article  CAS  PubMed  Google Scholar 

  6. Billiet, T., M. Vandenhaute, J. Schelfhout, S. Van Vlierberghe, and P. Dubruel. A review of trends and limitations in hydrogel-rapid prototyping for tissue engineering. Biomaterials 33:6020–6041, 2012.

    Article  CAS  PubMed  Google Scholar 

  7. Bouten, C. V. C., P. Y. W. Dankers, A. Driessen-Mol, S. Pedron, A. M. A. Brizard, and F. P. T. Baaijens. Substrates for cardiovascular tissue engineering. Adv. Drug Deliv. Rev. 63:221–241, 2011.

    Article  CAS  PubMed  Google Scholar 

  8. Butcher, J. T., G. J. Mahler, and L. A. Hockaday. Aortic valve disease and treatment: The need for naturally engineered solutions. Adv. Drug Deliv. Rev. 63:242–268, 2011.

    Article  CAS  PubMed  Google Scholar 

  9. Catros, S., F. Guillemot, A. Nandakumar, S. Ziane, L. Moroni, P. Habibovic, C. van Blitterswijk, B. Rousseau, O. Chassande, J. Amedee, and J. C. Fricain. Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng. C 18:62–70, 2012.

    Article  CAS  Google Scholar 

  10. Chang, C. C., E. D. Boland, S. K. Williams, and J. B. Hoying. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J. Biomed. Mater. Res. B 98B:160–170, 2011.

    Article  CAS  Google Scholar 

  11. Chen, J. H., and C. A. Simmons. Cell-matrix interactions in the pathobiology of calcific aortic valve disease critical roles for matricellular, matricrine, and matrix mechanics cues. Circ. Res. 108:1510–1524, 2011.

    Article  CAS  PubMed  Google Scholar 

  12. Cui, X. F., and T. Boland. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials 30:6221–6227, 2009.

    Article  CAS  PubMed  Google Scholar 

  13. Cui, X. F., T. Boland, D. D. D’Lima, and M. K. Lotz. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat. Drug Deliv. Formul. 6:149–155, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Derby, B. Printing and prototyping of tissues and scaffolds. Science 338:921–926, 2012.

    Article  CAS  PubMed  Google Scholar 

  15. Duan, B., L. A. Hockaday, S. Das, C. Y. Xu, and J. T. Butcher. Comparison of mesenchymal stem cell source differentiation towards human pediatric aortic valve interstitial cells within 3d engineered matrices. Tissue Eng. C 21:795–807, 2015.

    Article  CAS  Google Scholar 

  16. Duan, B., L. A. Hockaday, K. H. Kang, and J. T. Butcher. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res., Part A 101A:1255–1264, 2013.

    Article  CAS  Google Scholar 

  17. Duan, B., L. A. Hockaday, E. Kapetanovic, K. H. Kang, and J. T. Butcher. Stiffness and adhesivity control aortic valve interstitial cell behavior within hyaluronic acid based hydrogels. Acta Biomater. 9:7640–7650, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duan, B., E. Kapetanovic, L. A. Hockaday, and J. T. Butcher. Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater. 10:1836–1846, 2014.

    Article  CAS  PubMed  Google Scholar 

  19. Duan, B., and M. Wang. Customized ca-p/phbv nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J. R. Soc. Interface 7:S615–S629, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Duan, B., and M. Wang. Selective laser sintering and its application in biomedical engineering. MRS Bull. 36:998–1005, 2011.

    Article  CAS  Google Scholar 

  21. Duan, B., M. Wang, W. Y. Zhou, W. L. Cheung, Z. Y. Li, and W. W. Lu. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 6:4495–4505, 2010.

    Article  CAS  PubMed  Google Scholar 

  22. Gaebel, R., N. Ma, J. Liu, J. J. Guan, L. Koch, C. Klopsch, M. Gruene, A. Toelk, W. W. Wang, and P. Mark. Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32:9218–9230, 2011.

    Article  CAS  PubMed  Google Scholar 

  23. Gaetani, R., P. A. Doevendans, C. H. G. Metz, J. Alblas, E. Messina, A. Giacomello, and J. P. G. Sluijtera. Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33:1782–1790, 2012.

    Article  CAS  PubMed  Google Scholar 

  24. Gaetani, R., D. A. M. Feyen, V. Verhage, R. Slaats, E. Messina, K. L. Christman, A. Giacomello, P. A. F. M. Doevendans, and J. P. G. Sluijter. Epicardial application of cardiac progenitor cells in a 3D-printed gelatin/hyaluronic acid patch preserves cardiac function after myocardial infarction. Biomaterials 61:339–348, 2015.

    Article  CAS  PubMed  Google Scholar 

  25. Gao, Q., Y. He, J. Z. Fu, A. Liu, and L. Ma. Coaxial nozzle-assisted 3d bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215, 2015.

    Article  CAS  PubMed  Google Scholar 

  26. Gao, G. F., A. F. Schilling, K. Hubbell, T. Yonezawa, D. Truong, Y. Hong, G. H. Dai, and X. F. Cui. Improved properties of bone and cartilage tissue from 3D inkjet-bioprinted human mesenchymal stem cells by simultaneous deposition and photocrosslinking in peg-gelma. Biotechnol. Lett. 37:2349–2355, 2015.

    Article  CAS  PubMed  Google Scholar 

  27. Gerstle, T. L., A. M. S. Ibrahim, P. S. Kim, B. T. Lee, and S. J. Lin. A plastic surgery application in evolution: Three-dimensional printing. Plast. Reconstr. Surg. 133:446–451, 2014.

    Article  CAS  PubMed  Google Scholar 

  28. Go, A. S., D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, S. F. Dai, E. S. Ford, C. S. Fox, S. Franco, H. J. Fullerton, C. Gillespie, S. M. Hailpern, J. A. Heit, V. J. Howard, M. D. Huffman, S. E. Judd, B. M. Kissela, S. J. Kittner, D. T. Lackland, J. H. Lichtman, L. D. Lisabeth, R. H. Mackey, D. J. Magid, G. M. Marcus, A. Marelli, D. B. Matchar, D. K. McGuire, E. R. Mohler, C. S. Moy, M. E. Mussolino, R. W. Neumar, G. Nichol, D. K. Pandey, N. P. Paynter, M. J. Reeves, P. D. Sorlie, J. Stein, A. Towfighi, T. N. Turan, S. S. Virani, N. D. Wong, D. Woo, M. B. Turner, A. H. A. S. Comm, and S. S. Subcomm. Heart disease and stroke statistics-2014 update a report from the American heart association. Circulation 129:E28–E292, 2014.

    Article  PubMed  Google Scholar 

  29. Gou, M. L., X. Qu, W. Zhu, M. L. Xiang, J. Yang, K. Zhang, Y. Q. Wei, and S. C. Chen. Bio-inspired detoxification using 3d-printed hydrogel nanocomposites. Nat. Commun. 5:3774, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guillemot, F., V. Mironov, and M. Nakamura. Bioprinting is coming of age: Report from the international conference on bioprinting and biofabrication in bordeaux (3b’09). Biofabrication 2:010201, 2010.

    Article  PubMed  Google Scholar 

  31. Guillotin, B., A. Souquet, S. Catros, M. Duocastella, B. Pippenger, S. Bellance, R. Bareille, M. Remy, L. Bordenave, J. Amedee, and F. Guillemot. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256, 2010.

    Article  CAS  PubMed  Google Scholar 

  32. Haraguchi, Y., T. Shimizu, M. Yamato, and T. Okano. Concise review: cell therapy and tissue engineering for cardiovascular disease. Stem Cells and Translational Medicine. 1:136–141, 2012.

    Article  CAS  Google Scholar 

  33. Hasan, A., K. Ragaert, W. Swieszkowski, S. Selimovic, A. Paul, G. Camci-Unal, M. R. K. Mofrad, and A. Khademhosseini. Biomechanical properties of native and tissue engineered heart valve constructs. J. Biomech. 47:1949–1963, 2014.

    Article  PubMed  Google Scholar 

  34. Hinton, T. J., Q. Jallerat, R. N. Palchesko, J. H. Park, M. S. Grodzicki, H. J. Shue, M. H. Ramadan, A. R. Hudson, and A. W. Feinberg. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci. Adv. 1:e1500758, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Hirt, M. N., A. Hansen, and T. Eschenhagen. Cardiac tissue engineering state of the art. Circ. Res. 114:354–367, 2014.

    Article  CAS  PubMed  Google Scholar 

  36. Hockaday, L. A., B. Duan, K. H. Kang, and J. T. Butcher. 3D printed hydrogel technologies for tissue engineered heart valves. 3D Print. Addit. Manuf. 1:122–136, 2014.

    Article  Google Scholar 

  37. Hockaday, L. A., K. H. Kang, N. W. Colangelo, P. Y. C. Cheung, B. Duan, E. Malone, J. Wu, L. N. Girardi, L. J. Bonassar, H. Lipson, C. C. Chu, and J. T. Butcher. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds. Biofabrication 4:035005, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horch, R. E., U. Kneser, E. Polykandriotis, V. J. Schmidt, J. M. Sun, and A. Arkudas. Tissue engineering and regenerative medicine—where do we stand? J. Cell Mol. Med. 16:1157–1165, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Horvath, L., Y. Umehara, C. Jud, F. Blank, A. Petri-Fink, and B. Rothen-Rutishauser. Engineering an in vitro air-blood barrier by 3D bioprinting. Sci. Rep. 5:7974, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hribar, K. C., P. Soman, J. Warner, P. Chung, and S. C. Chen. Light-assisted direct-write of 3D functional biomaterials. Lab Chip 14:268–275, 2014.

    Article  CAS  PubMed  Google Scholar 

  41. Jakab, K., C. Norotte, F. Marga, K. Murphy, G. Vunjak-Novakovic, and G. Forgacs. Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Jana, S., and A. Lerman. Bioprinting a cardiac valve. Biotechnol. Adv. 33:1503–1521, 2015.

    Article  PubMed  Google Scholar 

  43. Jana, S., B. J. Tefft, D. B. Spoon, and R. D. Simari. Scaffolds for tissue engineering of cardiac valves. Acta Biomater. 10:2877–2893, 2014.

    Article  CAS  PubMed  Google Scholar 

  44. Jia, J., D. J. Richards, S. Pollard, Y. Tan, J. Rodriguez, R. P. Visconti, T. C. Trusk, M. J. Yost, H. Yao, R. R. Markwald, and Y. Mei. Engineering alginate as bioink for bioprinting. Acta Biomater. 10:4323–4331, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kang, K. H., L. A. Hockaday, and J. T. Butcher. Quantitative optimization of solid freeform deposition of aqueous hydrogels. Biofabrication 5:035001, 2013.

    Article  CAS  PubMed  Google Scholar 

  46. Kirchmajer, D. M., R. Gorkin, and M. I. H. Panhuis. An overview of the suitability of hydrogel-forming polymers for extrusion-based 3d-printing. J. Mater. Chem. B 3:4105–4117, 2015.

    Article  CAS  Google Scholar 

  47. Kolesky, D. B., R. L. Truby, A. S. Gladman, T. A. Busbee, K. A. Homan, and J. A. Lewis. 3d bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv. Mater. 26:3124–3130, 2014.

    Article  CAS  PubMed  Google Scholar 

  48. Kucukgul, C., S. B. Ozler, I. Inci, E. Karakas, S. Irmak, D. Gozuacik, A. Taralp, and B. Koc. 3d bioprinting of biomimetic aortic vascular constructs with self-supporting cells. Biotechnol. Bioeng. 112:811–821, 2015.

    Article  CAS  PubMed  Google Scholar 

  49. Lantada, A. D., and P. L. Morgado. Rapid prototyping for biomedical engineering: current capabilities and challenges. Annu. Rev. Biomed. Eng. 14:73–96, 2012.

    Article  CAS  PubMed  Google Scholar 

  50. Lee, V. K., D. Y. Kim, H. G. Ngo, Y. Lee, L. Seo, S. S. Yoo, P. A. Vincent, and G. H. Dai. Creating perfused functional vascular channels using 3d bio-printing technology. Biomaterials 35:8092–8102, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lee, V. K., A. M. Lanzi, H. Ngo, S. S. Yoo, P. A. Vincent, and G. H. Dai. Generation of multi-scale vascular network system within 3d hydrogel using 3d bio-printing technology. Cell. Mol. Bioeng. 7:460–472, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Levato, R., J. Visser, J. A. Planell, E. Engel, J. Malda, and M. A. Mateos-Timoneda. Biofabrication of tissue constructs by 3d bioprinting of cell-laden microcarriers. Biofabrication 6:035020, 2014.

    Article  PubMed  CAS  Google Scholar 

  53. Li, C., A. Faulkner-Jones, A. R. Dun, J. Jin, P. Chen, Y. Z. Xing, Z. Q. Yang, Z. B. Li, W. M. Shu, D. S. Liu, and R. R. Duncan. Rapid formation of a supramolecular polypeptide-DNA hydrogel for in situ three-dimensional multilayer bioprinting. Angew. Chem. Int. Ed. 54:3957–3961, 2015.

    Article  CAS  Google Scholar 

  54. Loerakker, S., G. Argento, C. W. J. Oomens, and F. P. T. Baaijens. Effects of valve geometry and tissue anisotropy on the radial stretch and coaptation area of tissue-engineered heart valves. J. Biomech. 46:1792–1800, 2013.

    Article  CAS  PubMed  Google Scholar 

  55. Loo, Y. H., A. Lakshmanan, M. Ni, L. L. Toh, S. Wang, and C. A. E. Hauser. Peptide bioink: self-assembling nanofibrous scaffolds for three-dimensional organotypic cultures. Nano Lett. 15:6919–6925, 2015.

    Article  CAS  PubMed  Google Scholar 

  56. Lundberg, M. S. Cardiovascular tissue engineering research support at the national heart, lung, and blood institute. Circ. Res. 112:1097–1103, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Markstedt, K., A. Mantas, I. Tournier, H. M. Avila, D. Hagg, and P. Gatenholm. 3D bioprinting human chondrocytes with nanocellulose-alginate bioink for cartilage tissue engineering applications. Biomacromolecules 16:1489–1496, 2015.

    Article  CAS  PubMed  Google Scholar 

  58. Mehesz, A. N., J. Brown, Z. Hajdu, W. Beaver, J. V. L. da Silva, R. P. Visconti, R. R. Markwald, and V. Mironov. Scalable robotic biofabrication of tissue spheroids. Biofabrication 3:025002, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Melchels, F. P. W., M. A. N. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, and D. W. Hutmacher. Additive manufacturing of tissues and organs. Prog. Polym. Sci. 37:1079–1104, 2012.

    Article  CAS  Google Scholar 

  60. Melchels, F. P. W., J. Feijen, and D. W. Grijpma. A review on stereolithography and its applications in biomedical engineering. Biomaterials 31:6121–6130, 2010.

    Article  CAS  PubMed  Google Scholar 

  61. Miller, J. S., K. R. Stevens, M. T. Yang, B. M. Baker, D. H. T. Nguyen, D. M. Cohen, E. Toro, A. A. Chen, P. A. Galie, X. Yu, R. Chaturvedi, S. N. Bhatia, and C. S. Chen. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat. Mater. 11:768–774, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mironov, V., N. Reis, and B. Derby. Bioprinting: a beginning. Tissue Eng. 12:631–634, 2006.

    Article  PubMed  Google Scholar 

  63. Mironov, V., R. P. Visconti, V. Kasyanov, G. Forgacs, C. J. Drake, and R. R. Markwald. Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mosadegh, B., G. L. Xiong, S. Dunham, and J. K. Min. Current progress in 3d printing for cardiovascular tissue engineering. Biomed. Mater. 10:034002, 2015.

    Article  PubMed  CAS  Google Scholar 

  65. Murphy, S. V., and A. Atala. 3d bioprinting of tissues and organs. Nat. Biotechnol. 32:773–785, 2014.

    Article  CAS  PubMed  Google Scholar 

  66. Murry, C. E., R. W. Wiseman, S. M. Schwartz, and S. D. Hauschka. Skeletal myoblast transplantation for repair of myocardial necrosis. J. Clin. Invest. 98:2512–2523, 1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Norotte, C., F. S. Marga, L. E. Niklason, and G. Forgacs. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910–5917, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Novosel, E. C., C. Kleinhans, and P. J. Kluger. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63:300–311, 2011.

    Article  CAS  PubMed  Google Scholar 

  69. Ozbolat, I. T. Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol. 33:395–400, 2015.

    Article  CAS  PubMed  Google Scholar 

  70. Ozbolat, I. T., and M. Hospodiuk. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343, 2016.

    Article  CAS  PubMed  Google Scholar 

  71. Ozbolat, I. T., and Y. Yu. Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans. Biomed. Eng. 60:691–699, 2013.

    Article  PubMed  Google Scholar 

  72. Park, J. Y., J. H. Shim, S. A. Choi, J. Jang, M. Kim, S. H. Lee, and D. W. Cho. 3d printing technology to control bmp-2 and vegf delivery spatially and temporally to promote large-volume bone regeneration. J. Mater. Chem. B 3:5415–5425, 2015.

    Article  CAS  Google Scholar 

  73. Parvin, N. S., M. C. Blaser, J. P. Santerre, C. A. Caldarone, and C. A. Simmons. Biomechanical conditioning of tissue engineered heart valves: too much of a good thing? Adv. Drug Deliv. Rev. 96:161–175, 2016.

    Article  CAS  Google Scholar 

  74. Pati, F., D. H. Ha, J. Jang, H. H. Han, J. W. Rhie, and D. W. Cho. Biomimetic 3d tissue printing for soft tissue regeneration. Biomaterials 62:164–175, 2015.

    Article  CAS  PubMed  Google Scholar 

  75. Pati, F., J. Jang, D. H. Ha, S. W. Kim, J. W. Rhie, J. H. Shim, D. H. Kim, and D. W. Cho. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat. Commun. 5:3935, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Paulsen, S. J., and J. S. Miller. Tissue vascularization through 3D printing: will technology bring us flow? Dev. Dyn. 244:629–640, 2015.

    Article  CAS  PubMed  Google Scholar 

  77. Peltola, S. M., F. P. W. Melchels, D. W. Grijpma, and M. Kellomaki. A review of rapid prototyping techniques for tissue engineering purposes. Ann. Med. 40:268–280, 2008.

    Article  CAS  PubMed  Google Scholar 

  78. Poldervaart, M. T., H. Gremmels, K. van Deventer, J. O. Fledderus, F. C. Oner, M. C. Verhaar, W. J. A. Dhert, and J. Alblas. Prolonged presence of vegf promotes vascularization in 3d bioprinted scaffolds with defined architecture. J. Controlled Release 184:58–66, 2014.

    Article  CAS  Google Scholar 

  79. Reffelmann, T., and R. A. Kloner. Cellular cardiomyoplasty—cardiomyocytes, skeletal myoblasts, or stem cells for regenerating myocardium and treatment of heart failure? Cardiovasc. Res. 58:358–368, 2003.

    Article  CAS  PubMed  Google Scholar 

  80. Rouwkema, J., N. C. Rivron, and C. A. van Blitterswijk. Vascularization in tissue engineering. Trends Biotechnol. 26:434–441, 2008.

    Article  CAS  PubMed  Google Scholar 

  81. Rutz, A. L., K. E. Hyland, A. E. Jakus, W. R. Burghardt, and R. N. Shah. A multimaterial bioink method for 3D printing tunable, cell-compatible hydrogels. Adv. Mater. 27:1607–1614, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sanders, B., S. Loerakker, E. S. Fioretta, D. J. P. Bax, A. Driessen-Mol, S. P. Hoerstrup, and F. P. T. Baaijens. Improved geometry of decellularized tissue engineered heart valves to prevent leaflet retraction. Ann. Biomed. Eng. 2015. doi:10.1007/s10439-10015-11386-10434.

    PubMed  PubMed Central  Google Scholar 

  83. Saunders, R. E., and B. Derby. Inkjet printing biomaterials for tissue engineering: bioprinting. Int. Mater. Rev. 59:430–448, 2014.

    Article  CAS  Google Scholar 

  84. Schiele, N. R., D. T. Corr, Y. Huang, N. A. Raof, Y. B. Xie, and D. B. Chrisey. Laser-based direct-write techniques for cell printing. Biofabrication 2:032001, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Schmidt, C. E., and J. M. Baier. Acellular vascular tissues: Natural biomaterials for tissue repair and tissue engineering. Biomaterials 21:2215–2231, 2000.

    Article  CAS  PubMed  Google Scholar 

  86. Seol, Y. J., H. W. Kang, S. J. Lee, A. Atala, and J. J. Yoo. Bioprinting technology and its applications. Eur. J. Cardiothorac. Surg. 46:342–348, 2014.

    Article  PubMed  Google Scholar 

  87. Sodian, R., D. Schmauss, M. Markert, S. Weber, K. Nikolaou, S. Haeberle, F. Vogt, C. Vicol, T. Lueth, B. Reichart, and C. Schmitz. Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting. Ann. Thorac. Surg. 85:2105–2109, 2008.

    Article  PubMed  Google Scholar 

  88. Spadaccio, C., M. Chello, M. Trombetta, A. Rainer, Y. Toyoda, and J. A. Genovese. Drug releasing systems in cardiovascular tissue engineering. J. Cell Mol. Med. 13:422–439, 2009.

    Article  CAS  PubMed  Google Scholar 

  89. Sui, R. Q., X. B. Liao, X. M. Zhou, and Q. Tan. The current status of engineering myocardial tissue. Stem Cell Rev. Rep. 7:172–180, 2011.

    Article  Google Scholar 

  90. Sun, X., W. Altalhi, and S. S. Nunes. Vascularization strategies of engineered tissues and their application in cardiac regeneration. Adv. Drug Deliv. Rev. 2015. doi:10.1016/j.addr.2015.1006.1001.

    Google Scholar 

  91. Visser, J., F. P. W. Melchels, J. E. Jeon, E. M. van Bussel, L. S. Kimpton, H. M. Byrne, W. J. A. Dhert, P. D. Dalton, D. W. Hutmacher, and J. Malda. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat. Commun. 6:6933, 2015.

    Article  CAS  PubMed  Google Scholar 

  92. Wang, F., and J. J. Guan. Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy. Adv. Drug Deliv. Rev. 62:784–797, 2010.

    Article  CAS  PubMed  Google Scholar 

  93. Williams, J. M., A. Adewunmi, R. M. Schek, C. L. Flanagan, P. H. Krebsbach, S. E. Feinberg, S. J. Hollister, and S. Das. Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26:4817–4827, 2005.

    Article  CAS  PubMed  Google Scholar 

  94. Williams, S. K., J. S. Touroo, K. H. Church, and J. B. Hoying. Encapsulation of adipose stromal vascular fraction cells in alginate hydrogel spheroids using a direct-write three-dimensional printing system. Biores. Open Access. 2:448–454, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wong, N. D. Epidemiological studies of chd and the evolution of preventive cardiology. Nat. Rev. Cardiol. 11:276–289, 2014.

    Article  PubMed  Google Scholar 

  96. Woodfield, T. B. F., J. Malda, J. de Wijn, F. Peters, J. Riesle, and C. A. van Blitterswijk. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials 25:4149–4161, 2004.

    Article  CAS  PubMed  Google Scholar 

  97. Xu, T., K. W. Binder, M. Z. Albanna, D. Dice, W. X. Zhao, J. J. Yoo, and A. Atala. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications. Biofabrication. 5:015001, 2013.

    Article  PubMed  CAS  Google Scholar 

  98. Xu, Y. F., and X. H. Wang. Application of 3d biomimetic models in drug delivery and regenerative medicine. Curr. Pharm. Des. 21:1618–1626, 2015.

    Article  CAS  PubMed  Google Scholar 

  99. Yang, S. F., K. F. Leong, Z. H. Du, and C. K. Chua. The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng. 8:1–11, 2002.

    Article  CAS  PubMed  Google Scholar 

  100. Yeh, R. W., S. Sidney, M. Chandra, M. Sorel, J. V. Selby, and A. S. Go. Population trends in the incidence and outcomes of acute myocardial infarction. N. Engl. J. Med. 362:2155–2165, 2010.

    Article  CAS  PubMed  Google Scholar 

  101. Yeong, W. Y., C. K. Chua, K. F. Leong, and M. Chandrasekaran. Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol. 22:643–652, 2004.

    Article  CAS  PubMed  Google Scholar 

  102. Yu, Y., Y. H. Zhang, and I. T. Ozbolat. A hybrid bioprinting approach for scale-up tissue fabrication. J. Manuf. Sci. Eng. Trans. ASME. 136:61013, 2014.

    Article  Google Scholar 

  103. Zein, I., D. W. Hutmacher, K. C. Tan, and S. H. Teoh. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials 23:1169–1185, 2002.

    Article  CAS  PubMed  Google Scholar 

  104. Zhang, A. P., X. Qu, P. Soman, K. C. Hribar, J. W. Lee, S. C. Chen, and S. L. He. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Advanced Materials. 24:4266–4270, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zheng, Y., J. M. Chen, M. Craven, N. W. Choi, S. Totorica, A. Diaz-Santana, P. Kermani, B. Hempstead, C. Fischbach-Teschl, J. A. Lopez, and A. D. Stroock. In vitro microvessels for the study of angiogenesis and thrombosis. Proc. Natl Acad. Sci. USA 109:9342–9347, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been supported by Mary & Dick Holland Regenerative Medicine Program start-up grant and Nebraska Research Initiative funding. The author has no financial disclosures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Duan.

Additional information

Associate Editor Amir Abbas Zadpoor oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, B. State-of-the-Art Review of 3D Bioprinting for Cardiovascular Tissue Engineering. Ann Biomed Eng 45, 195–209 (2017). https://doi.org/10.1007/s10439-016-1607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1607-5

Keywords

Navigation