Skip to main content
Log in

Quasi-Newton methods for multiobjective optimization problems

  • Research Paper
  • Published:
4OR Aims and scope Submit manuscript

Abstract

This work is an attempt to develop multiobjective versions of some well-known single objective quasi-Newton methods, including BFGS, self-scaling BFGS (SS-BFGS), and the Huang BFGS (H-BFGS). A comprehensive and comparative study of these methods is presented in this paper. The Armijo line search is used for the implementation of these methods. The numerical results show that the Armijo rule does not work the same way for the multiobjective case as for the single objective case, because, in this case, it imposes a large computational effort and significantly decreases the speed of convergence in contrast to the single objective case. Hence, we consider two cases of all multi-objective versions of quasi-Newton methods: in the presence of the Armijo line search and in the absence of any line search. Moreover, the convergence of these methods without using any line search under some mild conditions is shown. Also, by introducing a multiobjective subproblem for finding the quasi-Newton multiobjective search direction, a simple representation of the Karush–Kuhn–Tucker conditions is derived. The H-BFGS quasi-Newton multiobjective optimization method provides a higher-order accuracy in approximating the second order curvature of the problem functions than the BFGS and SS-BFGS methods. Thus, this method has some benefits compared to the other methods as shown in the numerical results. All mentioned methods proposed in this paper are evaluated and compared with each other in different aspects. To do so, some well-known test problems and performance assessment criteria are employed. Moreover, these methods are compared with each other with regard to the expended CPU time, the number of iterations, and the number of function evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bandyopadhyay S, Pal SK, Aruna B (2004) Multiobjective GAs, quantitative indices, and pattern classification. IEEE Trans Syst Man Cybern B Cybern 34(5):2088–2099

    Article  Google Scholar 

  • Basirzadeh H, Morovati V, Sayadi A (2014) A quick method to calculate the super-efficient point in multi-objective assignment problems. J Math Comput Sci 10:157–162

    Article  Google Scholar 

  • Basseur M (2006) Design of cooperative algorithms for multi-objective optimization: application to the flow-shop scheduling problem. 4OR 4(3):255–258

    Article  Google Scholar 

  • Benson H, Sayin S (1997) Towards finding global representations of the efficient set in multiple objective mathematical programming. Nav Res Logist 44(1):47–67

    Article  Google Scholar 

  • Custodio AL, Madeira JFA, Vaz AIF, Vicente LN (2011) Direct multisearch for multiobjective optimization. SIAM J Optim 21(3):1109–1140

    Article  Google Scholar 

  • Da Silva CG, Climaco J, Almeida Filho A (2010) The small world of efficient solutions: empirical evidence from the bi-objective 0, 1-knapsack problem. 4OR 8(2):195–211

    Article  Google Scholar 

  • Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J Optim 8(3):631–657

    Article  Google Scholar 

  • Dolan ED, More JJ (2002) Benchmarking optimization software with performance profiles. Math Program 91:201–213

    Article  Google Scholar 

  • Drummond LG, Iusem AN (2004) A projected gradient method for vector optimization problems. Comput Optim Appl 28:5–29

    Article  Google Scholar 

  • Drummond LMG, Svaiter BF (2005) A steepest descent method for vector optimization. J Comput Appl Math 175:395–414

    Article  Google Scholar 

  • Ehrgott M (2005) Multicriteria optimization. Springer, Berlin

    Google Scholar 

  • Eskelinen P, Miettinen K (2012) Trade-off analysis approach for interactive nonlinear multiobjective optimization. OR Spectrum 34(4):803–816

    Article  Google Scholar 

  • Fliege J (2004) Gap-free computation of pareto-points by quadratic scalarizations. Math Methods Oper Res 59(1):69–89

    Article  Google Scholar 

  • Fliege J (2006) An efficient interior-point method for convex multicriteria optimization problems. Math Oper Res 31(4):825–845

    Article  Google Scholar 

  • Fliege J, Svaiter BF (2000) Steepest descent methods for multicriteria optimization. Math Methods Oper Res 51:479–494

    Article  Google Scholar 

  • Fliege J, Drummond LMG, Svaiter BF (2009) Newton’s method for multiobjective optimization. SIAM J Optim 20:602–626

    Article  Google Scholar 

  • Fliege J, Heseler A (2002) Constructing approximations to the efficient set of convex quadratic multiobjective problems. Ergebnisberichte Angewandte Mathematik 211, Univ. Dortmund, Germany

  • Gopfert A, Nehse R (1990) Vektoroptimierung: theorie, verfahren und anwendungen. B. G. Teubner Verlag, Leipzig

    Google Scholar 

  • Hillermeier C: Nonlinear Multiobjective Optimization: a generalized homotopy approach. ISNM 25, Berlin (2001)

  • Jin Y, Olhofer M, Sendhoff B (2001) Dynamic weighted aggregation for evolutionary multiobjective optimization: why does it work and how? In: Proceedings of the genetic and evolutionary computation conference, pp 1042–1049 (2001)

  • Kim IY, De Weck OL (2005) Adaptive weighted sum method for bi-objective optimization: pareto front generation. Struct Multidiscip Optim 29:149–158

    Article  Google Scholar 

  • Knowles J, Thiele L, Zitzler E (2006) A tutorial on the performance assessment of stochastic multiobjective optimizers, TIK Report 214. Computer Engineering and Networks Laboratory, ETH Zurich

  • Kuk H, Tanino T, Tanaka M (1997) Trade-off analysis for vector optimization problems via scalarization. J Inf Optim Sci 18(1):75–87

    Google Scholar 

  • Laumanns M, Thiele L, Deb K, Zitzler E (2002) Combining convergence and diversity in evolutionary multiobjective optimization. Evol Comut 10:263–282

    Article  Google Scholar 

  • Luc DT (1988) Theory of vector optimization. Springer, Berlin

    Google Scholar 

  • Morovati V, Pourkarimi L, Basirzadeh H (2016) Barzilai and Borwein’s method for multiobjective optimization problems. Numer Algorithms 72(3):539–604

    Article  Google Scholar 

  • Nocedal J, Wright S (2006) Numerical optimization. Springer, New York

    Google Scholar 

  • Povalej Z (2014) Quasi-Newton’s method for multiobjective optimization. J Comput Appl Math 255:765–777

    Article  Google Scholar 

  • Preuss M, Naujoks B, Rudolph G (206) Pareto set and EMOA behavior for simple multimodal multiobjective functions. In: Runarsson TP et al (eds) Proceedings of the ninth international conference on parallel problem solving from nature (PPSN IX), Springer, Berlin, pp 513–522 (2006)

  • Qu S, Goh M, Chan FTS (2011) Quasi-Newton methods for solving multiobjective optimization. Oper Res Lett 39:397–399

    Article  Google Scholar 

  • Qu S, Goh M, Liang B (2013) Trust region methods for solving multiobjective optimisation. Optim Method Softw 28(4):796–811

    Article  Google Scholar 

  • Sakawa M, Yano H (1990) Trade-off rates in the hyperplane method for multiobjective optimization problems. Eur J Oper Res 44(1):105–118

    Article  Google Scholar 

  • Sayadi-Bander A, Morovati V, Basirzadeh H (2015) A super non-dominated point for multi-objective transportation problem. Appl Appl Math 10(1):544–551

    Google Scholar 

  • Sayadi-bander A, Kasimbeyli R, Pourkarimi L (2017) A coradiant based scalarization to characterize approximate solutions of vector optimization problems with variable ordering structures. Oper Res Lett 45(1):93–97

    Article  Google Scholar 

  • Sayadi-bander A, Pourkarimi L, Kasimbeyli R, Basirzadeh H (2017) Coradiant sets and \(\varepsilon \)-efficiency in multiobjective optimization. J Glob Optim 68(3):587–600. https://doi.org/10.1007/s10898-016-0495-4

    Article  Google Scholar 

  • Schandl B, Klamroth K, Wiecek MM (2001) Norm-based approximation in bicriteria programming. Comput Optim Appl 20(1):23–42

    Article  Google Scholar 

  • Segura C, Coello CAC, Miranda G, Len C (2013) Using multi-objective evolutionary algorithms for single-objective optimization. 4OR 11(3):201–228

    Article  Google Scholar 

  • Sun W, Yuan YX (2006) Optimization theory and methods: nonlinear programming. Springer, New York

    Google Scholar 

  • Tappeta RV, Renaud JE (1999) Interactive multiobjective optimization procedure. AIAA J 37(7):881–889

    Article  Google Scholar 

  • Villacorta KDV, Oliveira PR, Soubeyran A (2014) A trust-region method for unconstrained multiobjective problems with applications in satisficing processes. J Optim Theory Appl 160:865–889

    Article  Google Scholar 

  • Zhang J, Xu C (2001) Properties and numerical performance of quasi-Newton methods with modified quasi-Newton equations. J Comput Appl Math 137(2):269–278

    Article  Google Scholar 

  • Zhang JZ, Deng NY, Chen LH (1999) New quasi-Newton equation and related methods for unconstrained optimization. J Optim Theory Appl 102(1):147–167

    Article  Google Scholar 

  • Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comut 8:173–195

    Article  Google Scholar 

  • Zitzler E, Thiele L, Laumanns M, Fonseca CM, da Fonseca VG (2003) Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahid Morovati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morovati, V., Basirzadeh, H. & Pourkarimi, L. Quasi-Newton methods for multiobjective optimization problems. 4OR-Q J Oper Res 16, 261–294 (2018). https://doi.org/10.1007/s10288-017-0363-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10288-017-0363-1

Keywords

Mathematics Subject Classification

Navigation