Skip to main content
Log in

An integrated view of cisplatin-induced nephrotoxicity, hepatotoxicity, and cardiotoxicity: characteristics, common molecular mechanisms, and current clinical management

  • Review article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Cisplatin (CP) is a chemotherapy drug widely prescribed to treat various neoplasms. Although fundamental for the therapeutic action of the drug, its cytotoxic mechanisms trigger adverse effects in several tissues, such as the kidney, liver, and heart, which limit its clinical use. In this sense, studies point to an essential role of damage to nuclear and mitochondrial DNA associated with oxidative stress, inflammation, and apoptosis in the pathophysiology of tissue injuries. Due to the limitation of effective preventive and therapeutic measures against CP-induced toxicity, new strategies with potential cytoprotective effects have been studied. Therefore, this article is timely in reviewing the characteristics and main molecular mechanisms common to renal, hepatic, and cardiac toxicity previously described, in addition to addressing the main validated strategies for the current management of these adverse events in clinical practice. We also handle the main promising antioxidant substances recently presented in the literature to encourage the development of new research that consolidates their potential preventive and therapeutic effects against CP-induced cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hussein A, Ahmed AAE, Shouman SA, Sharawy S. Ameliorating effect of DL-α-lipoic acid against cisplatin-induced nephrotoxicity and cardiotoxicity in experimental animals. Drug Discov Ther. 2012;6(3):147–56.

    CAS  PubMed  Google Scholar 

  2. Miyagi MYS, Latancia MT, Testagrossa LA, de Andrade-Oliveira V, Pereira WO, Hiyane MI, et al. Physical exercise contributes to cisplatin-induced nephrotoxicity protection with decreased CD4+ T cells activation. Mol Immunol. 2018;101:507–13.

    Article  PubMed  Google Scholar 

  3. Aldossary SA. Review on pharmacology of cisplatin: clinical use, toxicity and mechanism of resistance of cisplatin. Biomed Pharmacol J. 2019;12(1):7–15.

    Article  CAS  Google Scholar 

  4. Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM. DNA repair pathways and cisplatin resistance: an intimate relationship. Clin Sao Paulo Braz. 2018;73(Suppl 1):e478s.

    Article  Google Scholar 

  5. Oun R, Moussa YE, Wheate NJ. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans Camb Engl 2003. 2018;47(19):6645–53.

  6. de Jongh FE, van Veen RN, Veltman SJ, de Wit R, van der Burg MEL, van den Bent MJ, et al. Weekly high-dose cisplatin is a feasible treatment option: analysis on prognostic factors for toxicity in 400 patients. Br J Cancer. 2003;88(8):1199–206.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Uehara T, Yamate J, Torii M, Maruyama T. Comparative nephrotoxicity of cisplatin and nedaplatin: mechanisms and histopathological characteristics. J Toxicol Pathol. 2011;24(2):87–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ozkok A, Edelstein CL. Pathophysiology of cisplatin-induced acute kidney injury. BioMed Res Int. 2014;2014: 967826.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xing JJ, Hou JG, Liu Y, Zhang RB, Jiang S, Ren S, et al. Supplementation of Saponins from leaves of Panax quinquefolius mitigates cisplatin-evoked cardiotoxicity via inhibiting oxidative stress-associated inflammation and apoptosis in mice. Antioxid Basel Switz. 2019;8(9):347.

    Article  CAS  Google Scholar 

  10. Peres LAB, da Cunha AD. Acute nephrotoxicity of cisplatin: molecular mechanisms. J Bras Nefrol. 2013;35(4):332–40.

    Article  PubMed  Google Scholar 

  11. Oh GS, Kim HJ, Shen A, Lee SB, Khadka D, Pandit A, et al. Cisplatin-induced kidney dysfunction and perspectives on improving treatment strategies. Electrolytes Blood Press E BP. 2014;12(2):55–65.

    Article  CAS  PubMed  Google Scholar 

  12. Ma X, Yan L, Zhu Q, Shao F. Puerarin attenuates cisplatin-induced rat nephrotoxicity: the involvement of TLR4/NF-κB signaling pathway. PLoS ONE. 2017;12(2): e0171612.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Almutairi MM, Alanazi WA, Alshammari MA, Alotaibi MR, Alhoshani AR, Al-Rejaie SS, et al. Neuro-protective effect of rutin against cisplatin-induced neurotoxic rat model. BMC Complement Altern Med. 2017;17(1):472.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Qi L, Luo Q, Zhang Y, Jia F, Zhao Y, Wang F. Advances in toxicological research of the anticancer drug cisplatin. Chem Res Toxicol. 2019;32(8):1469–86.

    Article  CAS  PubMed  Google Scholar 

  15. Gu J, Wang X, Chen Y, Xu K, Yu D, Wu H. An enhanced antioxidant strategy of astaxanthin encapsulated in ROS-responsive nanoparticles for combating cisplatin-induced ototoxicity. J Nanobiotechnol. 2022;20(1):268.

    Article  CAS  Google Scholar 

  16. Li W, Sun Y, Chen J, Jiang Z, Yang J. PEGylated cisplatin nanoparticles for treating colorectal cancer in a pH-responsive manner. J Immunol Res. 2022;2022:8023915.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Holditch SJ, Brown CN, Lombardi AM, Nguyen KN, Edelstein CL. Recent advances in models, mechanisms, biomarkers, and interventions in cisplatin-induced acute kidney injury. Int J Mol Sci. 2019;20(12):3011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Volarevic V, Djokovic B, Jankovic MG, Harrell CR, Fellabaum C, Djonov V, et al. Molecular mechanisms of cisplatin-induced nephrotoxicity: a balance on the knife edge between renoprotection and tumor toxicity. J Biomed Sci. 2019;26(1):25.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kumar P, Sulakhiya K, Barua CC, Mundhe N. TNF-α, IL-6 and IL-10 expressions, responsible for disparity in action of curcumin against cisplatin-induced nephrotoxicity in rats. Mol Cell Biochem. 2017;431(1–2):113–22.

    Article  CAS  PubMed  Google Scholar 

  20. Meng H, Fu G, Shen J, Shen K, Xu Z, Wang Y, et al. Ameliorative effect of daidzein on cisplatin-induced nephrotoxicity in mice via modulation of inflammation, oxidative stress, and cell death. Oxid Med Cell Longev. 2017;2017:3140680.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Francescato HDC, Coimbra TM, Costa RS, Bianchi M de LP. Protective effect of quercetin on the evolution of cisplatin-induced acute tubular necrosis. Kidney Blood Press Res. 2004;27(3):148–58.

  22. Francescato HDC, Almeida LF, Reis NG, Faleiros CM, Papoti M, Costa RS, et al. Previous exercise effects in cisplatin-induced renal lesions in rats. Kidney Blood Press Res. 2018;43(2):582–93.

    Article  CAS  PubMed  Google Scholar 

  23. Wei Q, Dong Z. Mouse model of ischemic acute kidney injury: technical notes and tricks. Am J Physiol Renal Physiol. 2012;303(11):F1487-1494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang JN, Liu MM, Wang F, Wei B, Yang Q, Cai YT, et al. RIPK1 inhibitor Cpd-71 attenuates renal dysfunction in cisplatin-treated mice via attenuating necroptosis, inflammation and oxidative stress. Clin Sci Lond Engl 1979. 2019;133(14):1609–27.

  25. Yuluğ E, Türedi S, Yıldırım Ö, Yenilmez E, Aliyazıcıoğlu Y, Demir S, et al. Biochemical and morphological evaluation of the effects of propolis on cisplatin induced kidney damage in rats. Biotech Histochem. 2019;94(3):204–13.

    Article  PubMed  Google Scholar 

  26. Leite AB, Lima HN, Flores C de O, Oliveira CA, Cunha LEC, Neves JL, et al. High-intensity interval training is more effective than continuous training to reduce inflammation markers in female rats with cisplatin nephrotoxicity. Life Sci. 2021;266:118880.

  27. Aljuhani N, Ismail RS, El-Awady MS, Hassan MH. Modulatory effects of perindopril on cisplatin-induced nephrotoxicity in mice: Implication of inflammatory cytokines and caspase-3 mediated apoptosis. Acta Pharm Zagreb Croat. 2020;70(4):515–25.

    CAS  Google Scholar 

  28. Ugur S, Ulu R, Dogukan A, Gurel A, Yigit IP, Gozel N, et al. The renoprotective effect of curcumin in cisplatin-induced nephrotoxicity. Ren Fail. 2015;37(2):332–6.

    Article  CAS  PubMed  Google Scholar 

  29. Malik S, Bhatia J, Suchal K, Gamad N, Dinda AK, Gupta YK, et al. Nobiletin ameliorates cisplatin-induced acute kidney injury due to its anti-oxidant, anti-inflammatory and anti-apoptotic effects. Exp Toxicol Pathol. 2015;67(7–8):427–33.

    Article  CAS  PubMed  Google Scholar 

  30. Oliveira CA, Mercês ÉAB, Portela FS, De Benedictis JM, De Benedictis LM, da Silva AVB, et al. Benefits of high-intensity interval training compared to continuous training to reduce apoptotic markers in female rats with cisplatin nephrotoxicity – possible modulatory role of IL-11. Apoptosis Int J Program Cell Death. 2023;28(3–4):566–75.

    Article  CAS  Google Scholar 

  31. Winston JA, Safirstein R. Reduced renal blood flow in early cisplatin-induced acute renal failure in the rat. Am J Physiol. 1985;249(4 Pt 2):F490-496.

    CAS  PubMed  Google Scholar 

  32. Robbins ME, Campling D, Whitehouse E, Hopewell JW, Michalowski A. Cisplatin-induced reductions in renal functional reserve uncovered by unilateral nephrectomy: an experimental study in the pig. Cancer Chemother Pharmacol. 1990;27(3):211–8.

    Article  CAS  PubMed  Google Scholar 

  33. Germani G, Battistella S, Ulinici D, Zanetto A, Shalaby S, Pellone M, et al. Drug induced liver injury: from pathogenesis to liver transplantation. Minerva Gastroenterol. 2021;67(1):50–64.

    Article  Google Scholar 

  34. Cersosimo RJ. Hepatotoxicity associated with cisplatin chemotherapy. Ann Pharmacother. 1993;27(4):438–41.

    Article  CAS  PubMed  Google Scholar 

  35. Ateyya H, Yosef H, Nader MA. Ameliorative effect of trimetazidine on cisplatin-induced hepatotoxicity in rats. Can J Physiol Pharmacol. 2016;94(2):225–30.

    Article  CAS  PubMed  Google Scholar 

  36. Karale S, Kamath JV. Effect of daidzein on cisplatin-induced hematotoxicity and hepatotoxicity in experimental rats. Indian J Pharmacol. 2017;49(1):49–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Martins NM, Santos N a. G, Curti C, Bianchi MLP, Santos AC. Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J Appl Toxicol JAT. 2008;28(3):337–44.

  38. Paunović MG, Matić MM, Stanković VD, Milošević MD, Jevtić VV, Trifunović SR, et al. Evaluation of toxic effects of novel platinum (IV) complexes in female rat liver: potential protective role of resveratrol. Cell Biochem Biophys. 2021;79(1):141–52.

    Article  PubMed  Google Scholar 

  39. Abd Rashid N, Hussan F, Hamid A, Adib Ridzuan NR, Halim SASA, Abdul Jalil NA, et al. Polygonum minus essential oil modulates cisplatin-induced hepatotoxicity through inflammatory and apoptotic pathways. EXCLI J. 2020;19:1246–65.

    PubMed  PubMed Central  Google Scholar 

  40. Un H, Ugan RA, Kose D, Bayir Y, Cadirci E, Selli J, et al. A novel effect of Aprepitant: protection for cisplatin-induced nephrotoxicity and hepatotoxicity. Eur J Pharmacol. 2020;880: 173168.

    Article  CAS  PubMed  Google Scholar 

  41. Bano N, Najam R. Histopathological and biochemical assessment of liver damage in albino Wistar rats treated with cytotoxic platinum compounds in combination with 5-fluorouracil. Arch Med Sci AMS. 2019;15(4):1092–103.

    Article  CAS  PubMed  Google Scholar 

  42. Abdel-Gayoum AA, Ahmida MHS. Changes in the serum, liver, and renal cortical lipids and electrolytes in rabbits with cisplatin-induced nephrotoxicity. Turk J Med Sci. 2017;47(3):1019–27.

    Article  CAS  PubMed  Google Scholar 

  43. Afsar T, Razak S, Almajwal A, Rashid Khan M. Modulatory influence of Acacia hydaspica R. Parker ethyl acetate extract against cisplatin inveigled hepatic injury and dyslipidemia in rats. BMC Complement Altern Med. 2017;17(1):307.

  44. Tlili N, Feriani A, Saadoui E, Nasri N, Khaldi A. Capparis spinosa leaves extract: source of bioantioxidants with nephroprotective and hepatoprotective effects. Biomed Pharmacother Biomedicine Pharmacother. 2017;87:171–9.

    Article  CAS  Google Scholar 

  45. El-Gizawy MM, Hosny EN, Mourad HH, Abd-El Razik AN. Curcumin nanoparticles ameliorate hepatotoxicity and nephrotoxicity induced by cisplatin in rats. Naunyn Schmiedebergs Arch Pharmacol. 2020;393(10):1941–53.

    Article  CAS  PubMed  Google Scholar 

  46. Daher IN, Yeh ETH. Vascular complications of selected cancer therapies. Nat Clin Pract Cardiovasc Med. 2008;5(12):797–805.

    Article  CAS  PubMed  Google Scholar 

  47. Afsar T, Razak S, Almajwal A, Shabbir M, Khan MR. Evaluating the protective potency of Acacia hydaspica R. Parker on histological and biochemical changes induced by Cisplatin in the cardiac tissue of rats. BMC Complement Altern Med. 2019;19(1):182.

  48. Herradón E, González C, Uranga JA, Abalo R, Martín MI, López-Miranda V. Characterization of cardiovascular alterations induced by different chronic cisplatin treatments. Front Pharmacol [Internet]. 2017 [citado 2 de fevereiro de 2024];8. Disponível em: https://www.frontiersin.org/articles/10.3389/fphar.2017.00196

  49. Saleh R, Awadin W, Elseady Y, Waheish FE. Renal and cardiovascular damage induced by Cisplatin in rats. Life Sci J. 2014;11:191–203.

    CAS  Google Scholar 

  50. Topal İ, Bilgin AÖ, Çimen FK, Kurt N, Süleyman Z, Bilgin Y, et al. The effect of rutin on cisplatin-induced oxidative cardiac damage in rats. Anatol J Cardiol. 2018;20(3):136–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dugbartey GJ, Peppone LJ, de Graaf IAM. An integrative view of cisplatin-induced renal and cardiac toxicities: molecular mechanisms, current treatment challenges and potential protective measures. Toxicology. 2016;371:58–66.

    Article  CAS  PubMed  Google Scholar 

  52. El-Awady ESE, Moustafa YM, Abo-Elmatty DM, Radwan A. Cisplatin-induced cardiotoxicity: mechanisms and cardioprotective strategies. Eur J Pharmacol. 2011;650(1):335–41.

    Article  CAS  PubMed  Google Scholar 

  53. Chowdhury S, Sinha K, Banerjee S, Sil PC. Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses. BioFactors Oxf Engl. 2016;42(6):647–64.

    Article  CAS  Google Scholar 

  54. Saleh DO, Mansour DF, Mostafa RE. Rosuvastatin and simvastatin attenuate cisplatin-induced cardiotoxicity via disruption of endoplasmic reticulum stress-mediated apoptotic death in rats: targeting ER-Chaperone GRP78 and Calpain-1 pathways. Toxicol Rep. 2020;7:1178–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Soliman AF, Anees LM, Ibrahim DM. Cardioprotective effect of zingerone against oxidative stress, inflammation, and apoptosis induced by cisplatin or gamma radiation in rats. Naunyn Schmiedebergs Arch Pharmacol. 2018;391(8):819–32.

    Article  CAS  PubMed  Google Scholar 

  56. Quintanilha JCF, de Sousa VM, Visacri MB, Amaral LS, Santos RMM, Zambrano T, et al. Involvement of cytochrome P450 in cisplatin treatment: implications for toxicity. Cancer Chemother Pharmacol. 2017;80(2):223–33.

    Article  CAS  PubMed  Google Scholar 

  57. More SS, Akil O, Ianculescu AG, Geier EG, Lustig LR, Giacomini KM. Role of the copper transporter, CTR1, in platinum-induced ototoxicity. J Neurosci. 2010;30(28):9500–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Manohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 2018;31(1):15–25.

    Article  CAS  PubMed  Google Scholar 

  59. Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, et al. Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol. 2010;176(3):1169–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yokoo S, Yonezawa A, Masuda S, Fukatsu A, Katsura T, Inui KI. Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. Biochem Pharmacol. 2007;74(3):477–87.

    Article  CAS  PubMed  Google Scholar 

  61. Pabla N, Murphy RF, Liu K, Dong Z. The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am J Physiol Renal Physiol. 2009;296(3):F505-511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Koepsell H. Organic cation transporters in intestine, kidney, liver, and brain. Annu Rev Physiol. 1998;60:243–66.

    Article  CAS  PubMed  Google Scholar 

  63. Sugawara-Yokoo M, Urakami Y, Koyama H, Fujikura K, Masuda S, Saito H, et al. Differential localization of organic cation transporters rOCT1 and rOCT2 in the basolateral membrane of rat kidney proximal tubules. Histochem Cell Biol. 2000;114(3):175–80.

    Article  CAS  PubMed  Google Scholar 

  64. Zatulovskiy EA, Skvortsov AN, Rusconi P, Ilyechova EY, Babich PS, Tsymbalenko NV, et al. Serum depletion of holo-ceruloplasmin induced by silver ions in vivo reduces uptake of cisplatin. J Inorg Biochem. 2012;116:88–96.

    Article  CAS  PubMed  Google Scholar 

  65. Kim BE, Turski ML, Nose Y, Casad M, Rockman HA, Thiele DJ. Cardiac copper deficiency activates a systemic signaling mechanism that communicates with the copper acquisition and storage organs. Cell Metab. 2010;11(5):353–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Barabas K, Milner R, Lurie D, Adin C. Cisplatin: a review of toxicities and therapeutic applications. Vet Comp Oncol. 2008;6(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  67. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869–83.

    Article  CAS  PubMed  Google Scholar 

  68. Townsend DM, Tew KD, He L, King JB, Hanigan MH. Role of glutathione S-transferase Pi in cisplatin-induced nephrotoxicity. Biomed Pharmacother Biomedicine Pharmacother. 2009;63(2):79–85.

    Article  CAS  Google Scholar 

  69. Shahid F, Farooqui Z, Alam T, Abidi S, Parwez I, Khan F. Thymoquinone supplementation ameliorates cisplatin-induced hepatic pathophysiology. Hum Exp Toxicol. 2021;40(10):1673–84.

    Article  CAS  PubMed  Google Scholar 

  70. Zhang J, Ye Z wei, Tew KD, Townsend DM. Cisplatin chemotherapy and renal function. Adv Cancer Res. 2021;152:305–27.

  71. Hanigan MH, Devarajan P. Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther. 2003;1:47–61.

    PubMed  PubMed Central  Google Scholar 

  72. Ali R, Aouida M, Alhaj Sulaiman A, Madhusudan S, Ramotar D. Can cisplatin therapy be improved? Pathways that can be targeted. Int J Mol Sci. 2022;23(13):7241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Townsend DM, Hanigan MH. Inhibition of gamma-glutamyl transpeptidase or cysteine S-conjugate beta-lyase activity blocks the nephrotoxicity of cisplatin in mice. J Pharmacol Exp Ther. 2002;300(1):142–8.

    Article  CAS  PubMed  Google Scholar 

  74. Amable L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res. 2016;106:27–36.

    Article  CAS  PubMed  Google Scholar 

  75. Johnstone TC, Suntharalingam K, Lippard SJ. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt(IV) prodrugs. Chem Rev. 2016;116(5):3436–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. El-Sawalhi MM, Ahmed LA. Exploring the protective role of apocynin, a specific NADPH oxidase inhibitor, in cisplatin-induced cardiotoxicity in rats. Chem Biol Interact. 2014;207:58–66.

    Article  CAS  PubMed  Google Scholar 

  77. Adalı F, Gonul Y, Kocak A, Yuksel Y, Ozkececi G, Ozdemir C, et al. Effects of thymoquinone against cisplatin-induced cardiac injury in rats. Acta Cir Bras. 2016;31(4):271–7.

    Article  PubMed  Google Scholar 

  78. Yang Z, Schumaker LM, Egorin MJ, Zuhowski EG, Guo Z, Cullen KJ. Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clin Cancer Res. 2006;12(19):5817–25.

    Article  CAS  PubMed  Google Scholar 

  79. Hu Y, Yang C, Amorim T, Maqbool M, Lin J, Li C, et al. Cisplatin-mediated upregulation of APE2 binding to MYH9 provokes mitochondrial fragmentation and acute kidney injury. Cancer Res. 2021;81(3):713–23.

    Article  CAS  PubMed  Google Scholar 

  80. Cocetta V, Ragazzi E, Montopoli M. Mitochondrial involvement in cisplatin resistance. Int J Mol Sci. 2019;20(14):3384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mapuskar KA, Steinbach EJ, Zaher A, Riley DP, Beardsley RA, Keene JL, et al. Mitochondrial superoxide dismutase in cisplatin-induced kidney injury. Antioxid Basel Switz. 2021;10(9):1329.

    Article  CAS  Google Scholar 

  82. Huang G, Zhang Q, Xu C, Chen L, Zhang H. Mechanism of kidney injury induced by cisplatin. Toxicol Res. 2022;11(3):385–90.

    Article  Google Scholar 

  83. Cullen KJ, Yang Z, Schumaker L, Guo Z. Mitochondria as a critical target of the chemotheraputic agent cisplatin in head and neck cancer. J Bioenerg Biomembr. 2007;39(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  84. Qian W, Nishikawa M, Haque AM, Hirose M, Mashimo M, Sato E, et al. Mitochondrial density determines the cellular sensitivity to cisplatin-induced cell death. Am J Physiol Cell Physiol. 2005;289(6):C1466-1475.

    Article  CAS  PubMed  Google Scholar 

  85. Jiang M, Wang CY, Huang S, Yang T, Dong Z. Cisplatin-induced apoptosis in p53-deficient renal cells via the intrinsic mitochondrial pathway. Am J Physiol – Ren Physiol. 2009;296(5):F983–93.

    Article  CAS  Google Scholar 

  86. Desoize B. Cancer and metals and metal compounds: part I–carcinogenesis. Crit Rev Oncol Hematol. 2002;42(1):1–3.

    Article  PubMed  Google Scholar 

  87. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene. 2003;22(47):7265–79.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang Y, Chen Y, Li B, Ding P, Jin D, Hou S, et al. The effect of monotropein on alleviating cisplatin-induced acute kidney injury by inhibiting oxidative damage, inflammation and apoptosis. Biomed Pharmacother Biomedicine Pharmacother. 2020;129: 110408.

    Article  CAS  Google Scholar 

  89. Noori S, Mahboob T. Antioxidant effect of carnosine pretreatment on cisplatin-induced renal oxidative stress in rats. Indian J Clin Biochem IJCB. 2010;25(1):86–91.

    Article  CAS  PubMed  Google Scholar 

  90. Al Fayi M, Otifi H, Alshyarba M, Dera AA, Rajagopalan P. Thymoquinone and curcumin combination protects cisplatin-induced kidney injury, nephrotoxicity by attenuating NFκB, KIM-1 and ameliorating Nrf2/HO-1 signalling. J Drug Target. 2020;28(9):913–22.

    Article  CAS  PubMed  Google Scholar 

  91. Aboraya DM, El Baz A, Risha EF, Abdelhamid FM. Hesperidin ameliorates cisplatin induced hepatotoxicity and attenuates oxidative damage, cell apoptosis, and inflammation in rats. Saudi J Biol Sci. 2022;29(5):3157–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Başak Türkmen N, Aşkın Özek D, Taşlıdere A, Çiftçi O, Saral Ö, Gül CC. Protective role of Diospyros lotus L. in cisplatin-induced cardiotoxicity: cardiac damage and oxidative stress in rats. Turk J Pharm Sci. 2022;19(2):132–7.

  93. Karasawa T, Steyger PS. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol Lett. 2015;237(3):219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Shao YP, Zhou Q, Li YP, Zhang SC, Xu HW, Wu S, et al. Curcumin ameliorates cisplatin-induced cystopathy via activating NRF2 pathway. Neurourol Urodyn. 2018;37(8):2470–9.

    Article  CAS  PubMed  Google Scholar 

  95. Sun L, Liu J, Yuan Y, Zhang X, Dong Z. Protective effect of the BET protein inhibitor JQ1 in cisplatin-induced nephrotoxicity. Am J Physiol - Ren Physiol. 2018;315(3):F469–78.

    Article  CAS  Google Scholar 

  96. Done AJ, Traustadóttir T. Nrf2 mediates redox adaptations to exercise. Redox Biol. 2016;10:191–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Di Meo S, Napolitano G, Venditti P. Mediators of physical activity protection against ROS-linked skeletal muscle damage. Int J Mol Sci. 2019;20(12):3024.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Alibakhshi T, Khodayar MJ, Khorsandi L, Rashno M, Zeidooni L. Protective effects of zingerone on oxidative stress and inflammation in cisplatin-induced rat nephrotoxicity. Biomed Pharmacother Biomedicine Pharmacother. 2018;105:225–32.

    Article  CAS  Google Scholar 

  99. Al-Malki AL, Sayed AAR. Thymoquinone attenuates cisplatin-induced hepatotoxicity via nuclear factor kappa-β. BMC Complement Altern Med. 2014;14:282.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bilgic Y, Akbulut S, Aksungur Z, Erdemli ME, Ozhan O, Parlakpinar H, et al. Protective effect of dexpanthenol against cisplatin-induced hepatotoxicity. Exp Ther Med. 2018;16(5):4049–57.

    PubMed  PubMed Central  Google Scholar 

  101. Ibrahim MA, Bakhaat GA, Tammam HG, Mohamed RM, El-Naggar SA. Cardioprotective effect of green tea extract and vitamin E on Cisplatin-induced cardiotoxicity in mice: toxicological, histological and immunohistochemical studies. Biomed Pharmacother Biomedicine Pharmacother. 2019;113: 108731.

    Article  CAS  Google Scholar 

  102. Elkomy A, Abdelhiee EY, Fadl SE, Emam MA, Gad FAM, Sallam A, et al. l-Carnitine mitigates oxidative stress and disorganization of cytoskeleton intermediate filaments in cisplatin-induced hepato-renal toxicity in rats. Front Pharmacol. 2020;11: 574441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Sherif IO. Hepatoprotective effect of arjunolic acid against cisplatin-induced hepatotoxicity: targeting oxidative stress, inflammation, and apoptosis. J Biochem Mol Toxicol. 2021;35(4): e22714.

    Article  CAS  PubMed  Google Scholar 

  104. El Shaffei I, Abdel-Latif GA, Farag DB, Schaalan M, Salama RM. Ameliorative effect of betanin on experimental cisplatin-induced liver injury; the novel impact of miRNA-34a on the SIRT1/PGC-1α signaling pathway. J Biochem Mol Toxicol. 2021;35(6):1–14.

    Article  PubMed  Google Scholar 

  105. Lin Z, Bao Y, Hong B, Wang Y, Zhang X, Wu Y. Salvianolic acid B attenuated cisplatin-induced cardiac injury and oxidative stress via modulating Nrf2 signal pathway. J Toxicol Sci. 2021;46(5):199–207.

    Article  CAS  PubMed  Google Scholar 

  106. Wang SH, Tsai KL, Chou WC, Cheng HC, Huang YT, Ou HC, et al. Quercetin mitigates cisplatin-induced oxidative damage and apoptosis in cardiomyocytes through Nrf2/HO-1 signaling pathway. Am J Chin Med. 2022;50(5):1281–98.

    Article  CAS  PubMed  Google Scholar 

  107. Visacri MB, Quintanilha JCF, de Sousa VM, Amaral LS, Ambrósio RdFL, Calonga L, et al. Can acetylcysteine ameliorate cisplatin‐induced toxicities and oxidative stress without decreasing antitumor efficacy? A randomized, double‐blind, placebo‐controlled trial involving patients with head and neck cancer. Cancer Med. 2019;8(5):2020–30.

  108. Raja W, Mir MH, Dar I, Banday MA, Ahmad I. Cisplatin induced paroxysmal supraventricular tachycardia. Indian J Med Paediatr Oncol. 2013;34(4):330–2.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Vickers AEM, Rose K, Fisher R, Saulnier M, Sahota P, Bentley P. Kidney slices of human and rat to characterize cisplatin-induced injury on cellular pathways and morphology. Toxicol Pathol. 2004;32(5):577–90.

    Article  CAS  PubMed  Google Scholar 

  110. Yao X, Panichpisal K, Kurtzman N, Nugent K. Cisplatin nephrotoxicity: a review. Am J Med Sci. 2007;334(2):115–24.

    Article  PubMed  Google Scholar 

  111. Oh GS, Kim HJ, Shen A, Lee SB, Yang SH, Shim H, et al. New therapeutic concept of NAD redox balance for cisplatin nephrotoxicity. BioMed Res Int. 2016;2016:4048390.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Ma ZN, Liu Z, Wang Z, Ren S, Tang S, Wang YP, et al. Supplementation of American ginseng berry extract mitigated cisplatin-evoked nephrotoxicity by suppressing ROS-mediated activation of MAPK and NF-κB signaling pathways. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2017;110:62–73.

    Article  CAS  Google Scholar 

  113. Li F, Yao Y, Huang H, Hao H, Ying M. Xanthohumol attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and activating Nrf2 signaling pathways. Int Immunopharmacol. 2018;61:277–82.

    Article  CAS  PubMed  Google Scholar 

  114. Habib SA, Suddek GM, Abdel Rahim M, Abdelrahman RS. The protective effect of protocatechuic acid on hepatotoxicity induced by cisplatin in mice. Life Sci. 2021;277: 119485.

    Article  CAS  PubMed  Google Scholar 

  115. Zhang B, Ramesh G, Norbury CC, Reeves WB. Cisplatin-induced nephrotoxicity is mediated by tumor necrosis factor-alpha produced by renal parenchymal cells. Kidney Int. 2007;72(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  116. Jain SK, Rains JL, Croad JL. Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNF-alpha, IL-6, CRP, glycated hemoglobin, triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats. Free Radic Biol Med. 2007;43(8):1124–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hop HT, Reyes AWB, Huy TXN, Arayan LT, Min W, Lee HJ, et al. Activation of NF-kB-mediated TNF-induced antimicrobial immunity is required for the efficient Brucella abortus clearance in RAW 264.7 cells. Front Cell Infect Microbiol. 2017;7:437.

  118. Hui D, Rui-Zhi T, Jian-Chun L, Xia Z, Dan W, Jun-Ming F, et al. Astragalus propinquus Schischkin and Panax notoginseng (A&P) compound relieved cisplatin-induced acute kidney injury through inhibiting the mincle maintained macrophage inflammation. J Ethnopharmacol. 2020;252: 112637.

    Article  CAS  PubMed  Google Scholar 

  119. TNF-alpha mediates chemokine and cytokine expression and renal injury in cisplatin nephrotoxicity – PubMed [Internet]. [citado 2 de fevereiro de 2024]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/12235115/

  120. Khedr LH, Rahmo RM, Farag DB, Schaalan MF, El Magdoub HM. Crocin attenuates cisplatin-induced hepatotoxicity via TLR4/NF-κBp50 signaling and BAMBI modulation of TGF-β activity: involvement of miRNA-9 and miRNA-29. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2020;140: 111307.

    Article  CAS  Google Scholar 

  121. Pabla N, Dong Z. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 2008;73(9):994–1007.

    Article  CAS  PubMed  Google Scholar 

  122. El-Hawwary AA, Omar NM. The influence of ginger administration on cisplatin-induced cardiotoxicity in rat: light and electron microscopic study. Acta Histochem. 2019;121(5):553–62.

    Article  CAS  PubMed  Google Scholar 

  123. Tsuruya K, Tokumoto M, Ninomiya T, Hirakawa M, Masutani K, Taniguchi M, et al. Antioxidant ameliorates cisplatin-induced renal tubular cell death through inhibition of death receptor-mediated pathways. Am J Physiol Renal Physiol. 2003;285(2):F208-218.

    Article  CAS  PubMed  Google Scholar 

  124. Kim HJ, Park DJ, Kim JH, Jeong EY, Jung MH, Kim TH, et al. Glutamine protects against cisplatin-induced nephrotoxicity by decreasing cisplatin accumulation. J Pharmacol Sci. 2015;127(1):117–26.

    Article  CAS  PubMed  Google Scholar 

  125. Al-Lamki RS, Mayadas TN. TNF receptors: signaling pathways and contribution to renal dysfunction. Kidney Int. 2015;87(2):281–96.

    Article  CAS  PubMed  Google Scholar 

  126. Dong Z, Atherton SS. Tumor necrosis factor-alpha in cisplatin nephrotoxicity: a homebred foe? Kidney Int. 2007;72(1):5–7.

    Article  CAS  PubMed  Google Scholar 

  127. Yang S, Wang J, Brand DD, Zheng SG. Role of TNF-TNF receptor 2 signal in regulatory T cells and its therapeutic implications. Front Immunol. 2018;9:784.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Farzanegi P, Abbaszadeh H, Farokhi F, Rahmati-Ahmadabad S, Hosseini SA, Ahmad A, et al. Attenuated renal and hepatic cells apoptosis following swimming exercise supplemented with garlic extract in old rats. Clin Interv Aging. 2020;15:1409–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Yu X, Meng X, Xu M, Zhang X, Zhang Y, Ding G, et al. Celastrol ameliorates cisplatin nephrotoxicity by inhibiting NF-κB and improving mitochondrial function. EBioMedicine. 2018;36:266–80.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wang S, Zheng Y, Jin S, Fu Y, Liu Y. Dioscin protects against cisplatin-induced acute kidney injury by reducing ferroptosis and apoptosis through activating Nrf2/HO-1 signaling. Antioxidants. 2022;11(12):2443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Targeted inhibition of CX3CL1 limits podocytes ferroptosis to ameliorate cisplatin-induced acute kidney injury – PubMed [Internet]. [citado 2 de fevereiro de 2024]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/37875838/

  132. Glutathione metabolism rewiring protects renal tubule cells against cisplatin-induced apoptosis and ferroptosis – PubMed [Internet]. [citado 2 de fevereiro de 2024]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/36692085/

  133. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Mou Y, Wang J, Wu J, He D, Zhang C, Duan C, et al. Ferroptosis, a new form of cell death: opportunities and challenges in cancer. J Hematol OncolJ Hematol Oncol. 2019;12(1):34.

    Article  Google Scholar 

  135. Frontiers | VPA improves ferroptosis in tubular epithelial cells after cisplatin-induced acute kidney injury [Internet]. [citado 2 de fevereiro de 2024]. Disponível em: https://www.frontiersin.org/articles/10.3389/fphar.2023.1147772/full

  136. Xie LH, Fefelova N, Pamarthi SH, Gwathmey JK. Molecular mechanisms of ferroptosis and relevance to cardiovascular disease. Cells. 2022;11(17):2726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fang X, Ardehali H, Min J, Wang F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol. 2023;20(1):7–23.

    Article  PubMed  Google Scholar 

  138. Ikeda Y, Hamano H, Horinouchi Y, Miyamoto L, Hirayama T, Nagasawa H, et al. Role of ferroptosis in cisplatin-induced acute nephrotoxicity in mice. J Trace Elem Med Biol Organ Soc Miner Trace Elem GMS. 2021;67: 126798.

    Article  CAS  Google Scholar 

  139. Mei H, Zhao L, Li W, Zheng Z, Tang D, Lu X, et al. Inhibition of ferroptosis protects House Ear Institute-Organ of Corti 1 cells and cochlear hair cells from cisplatin-induced ototoxicity. J Cell Mol Med. 2020;24(20):12065–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Guo J, Yin J, Liu P, Zhang X, Wei J, Wang M, et al. Glycyrrhizin arginine salt protects against cisplation-induced acute liver injury by repressing BECN1-mediated ferroptosis. Front Pharmacol [Internet]. 2023 [citado 3 de fevereiro de 2024];14. Disponível em: https://www.frontiersin.org/articles/10.3389/fphar.2023.1219486

  141. Tsang RY, Al-Fayea T, Au HJ. Cisplatin overdose: toxicities and management. Drug Saf. 2009;32(12):1109–22.

    Article  CAS  PubMed  Google Scholar 

  142. Desilets A, Adam JP, Soulières D. Management of cisplatin-associated toxicities in bladder cancer patients. Curr Opin Support Palliat Care. 2020;14(3):286–92.

    Article  PubMed  Google Scholar 

  143. Cornelison TL, Reed E. Nephrotoxicity and hydration management for cisplatin, carboplatin, and ormaplatin. Gynecol Oncol. 1993;50(2):147–58.

    Article  CAS  PubMed  Google Scholar 

  144. Ben Ayed W, Ben Said A, Hamdi A, Mokrani A, Masmoudi Y, Toukabri I, et al. Toxicity, risk factors and management of cisplatin-induced toxicity: a prospective study. J Oncol Pharm Pract. 2020;26(7):1621–9.

    Article  CAS  PubMed  Google Scholar 

  145. Tiseo M, Martelli O, Mancuso A, Sormani MP, Bruzzi P, Di Salvia R, et al. Short hydration regimen and nephrotoxicity of intermediate to high-dose cisplatin-based chemotherapy for outpatient treatment in lung cancer and mesothelioma. Tumori. 2007;93(2):138–44.

    Article  CAS  PubMed  Google Scholar 

  146. Burns CV, Edwin SB, Szpunar S, Forman J. Cisplatin-induced nephrotoxicity in an outpatient setting. Pharmacotherapy. 2021;41(2):184–90.

    Article  CAS  PubMed  Google Scholar 

  147. Crona DJ, Faso A, Nishijima TF, McGraw KA, Galsky MD, Milowsky MI. A systematic review of strategies to prevent cisplatin-induced nephrotoxicity. Oncologist. 2017;22(5):609–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ninomiya K, Hotta K, Hisamoto-Sato A, Ichihara E, Gotoda H, Morichika D, et al. Short-term low-volume hydration in cisplatin-based chemotherapy for patients with lung cancer: the second prospective feasibility study in the Okayama Lung Cancer Study Group Trial 1201. Int J Clin Oncol. 2016;21(1):81–7.

    Article  CAS  PubMed  Google Scholar 

  149. Fukushima K, Okada A, Oe H, Hirasaki M, Hamori M, Nishimura A, et al. Pharmacokinetic-pharmacodynamic analysis of cisplatin with hydration and mannitol diuresis: the contribution of urine cisplatin concentration to nephrotoxicity. Eur J Drug Metab Pharmacokinet. 2018;43(2):193–203.

    Article  CAS  PubMed  Google Scholar 

  150. Ruggiero A, Ariano A, Triarico S, Capozza MA, Romano A, Maurizi P, et al. Cisplatin-induced nephrotoxicity in children: what is the best protective strategy? J Oncol Pharm Pract. 2021;27(1):180–6.

    Article  PubMed  Google Scholar 

  151. Markman M, Cleary S, Howell SB. Nephrotoxicity of high-dose intracavitary cisplatin with intravenous thiosulfate protection. Eur J Cancer Clin Oncol. 1985;21(9):1015–8.

    Article  CAS  PubMed  Google Scholar 

  152. Gandara DR, Wiebe VJ, Perez EA, Makuch RW, DeGregorio MW. Cisplatin rescue therapy: experience with sodium thiosulfate, WR2721, and diethyldithiocarbamate. Crit Rev Oncol Hematol. 1990;10(4):353–65.

    Article  CAS  PubMed  Google Scholar 

  153. Oun R, Rowan E. Cisplatin induced arrhythmia; electrolyte imbalance or disturbance of the SA node? Eur J Pharmacol. 2017;811:125–8.

    Article  CAS  PubMed  Google Scholar 

  154. Pai VB, Nahata MC. Cardiotoxicity of chemotherapeutic agents: incidence, treatment and prevention. Drug Saf. 2000;22(4):263–302.

    Article  CAS  PubMed  Google Scholar 

  155. Zhao L. Protective effects of trimetazidine and coenzyme Q10 on cisplatin-induced cardiotoxicity by alleviating oxidative stress and mitochondrial dysfunction. Anatol J Cardiol. 2019;22(5):232–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Taghizadeh F, Hosseinimehr SJ, Zargari M, Karimpour Malekshah A, Mirzaei M, Talebpour AF. Alleviation of cisplatin-induced hepatotoxicity by gliclazide: involvement of oxidative stress and caspase-3 activity. Pharmacol Res Perspect. 2021;9(3): e00788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. El-Shitany NA, Eid B. Proanthocyanidin protects against cisplatin-induced oxidative liver damage through inhibition of inflammation and NF-κβ/TLR-4 pathway. Environ Toxicol. 2017;32(7):1952–63.

    Article  CAS  PubMed  Google Scholar 

  158. Ortega-Domínguez B, Aparicio-Trejo OE, García-Arroyo FE, León-Contreras JC, Tapia E, Molina-Jijón E, et al. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2017;107(Pt A):373–85.

    Article  Google Scholar 

  159. Waseem M, Pandey P, Tomar B, Raisuddin S, Parvez S. Ameliorative action of curcumin in cisplatin-mediated hepatotoxicity: an in vivo study in Wistar rats. Arch Med Res. 2014;45(6):462–8.

    Article  CAS  PubMed  Google Scholar 

  160. Bahadır A, Ceyhan A, Öz Gergin Ö, Yalçın B, Ülger M, Özyazgan TM, et al. Protective effects of curcumin and beta-carotene on cisplatin-induced cardiotoxicity: an experimental rat model. Anatol J Cardiol. 2018;19(3):213–21.

    PubMed  PubMed Central  Google Scholar 

  161. Khadrawy YA, Hosny EN, El-Gizawy MM, Sawie HG, Aboul Ezz HS. The effect of curcumin nanoparticles on cisplatin-induced cardiotoxicity in male Wistar Albino rats. Cardiovasc Toxicol. 2021;21(6):433–43.

    Article  CAS  PubMed  Google Scholar 

  162. Darwish MA, Abo-Youssef AM, Khalaf MM, Abo-Saif AA, Saleh IG, Abdelghany TM. Vitamin E mitigates cisplatin-induced nephrotoxicity due to reversal of oxidative/nitrosative stress, suppression of inflammation and reduction of total renal platinum accumulation. J Biochem Mol Toxicol. 2017;31(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  163. Abdel-Daim MM, Aleya L, El-Bialy BE, Abushouk AI, Alkahtani S, Alarifi S, et al. The ameliorative effects of ceftriaxone and vitamin E against cisplatin-induced nephrotoxicity. Environ Sci Pollut Res Int. 2019;26(15):15248–54.

    Article  CAS  PubMed  Google Scholar 

  164. Hepatoprotective effect of curcumin and alpha-tocopherol against cisplatin-induced oxidative stress | BMC Complementary Medicine and Therapies | Full Text [Internet]. [citado 3 de fevereiro de 2024]. Disponível em: https://bmccomplementmedtherapies.biomedcentral.com/articles/10.1186/1472-6882-14-111

  165. Rosic G, Selakovic D, Joksimovic J, Srejovic I, Zivkovic V, Tatalović N, et al. The effects of N-acetylcysteine on cisplatin-induced changes of cardiodynamic parameters within coronary autoregulation range in isolated rat hearts. Toxicol Lett. 2016;242:34–46.

    Article  CAS  PubMed  Google Scholar 

  166. Gunturk EE, Yucel B, Gunturk I, Yazici C, Yay A, Kose K. The effects of N-acetylcysteine on cisplatin induced cardiotoxicity. Bratisl Lek Listy. 2019;120(6):423–8.

    CAS  PubMed  Google Scholar 

  167. Abdel-Wahab WM, Moussa FI, Saad NA. Synergistic protective effect of N-acetylcysteine and taurine against cisplatin-induced nephrotoxicity in rats. Drug Des Devel Ther. 2017;11:901–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Elsayed A, Elkomy A, Elkammar R, Youssef G, Abdelhiee EY, Abdo W, et al. Synergistic protective effects of lycopene and N-acetylcysteine against cisplatin-induced hepatorenal toxicity in rats. Sci Rep. 2021;11(1):13979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Huang S, You J, Wang K, Li Y, Zhang Y, Wei H, et al. N-acetylcysteine attenuates cisplatin-induced acute kidney injury by inhibiting the C5a receptor. BioMed Res Int. 2019;2019:4805853.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Kandemir FM, Yildirim S, Caglayan C, Kucukler S, Eser G. Protective effects of zingerone on cisplatin-induced nephrotoxicity in female rats. Environ Sci Pollut Res Int. 2019;26(22):22562–74.

    Article  CAS  PubMed  Google Scholar 

  171. Gwon MG, Gu H, Leem J, Park KK. Protective effects of 6-Shogaol, an active compound of ginger, in a murine model of cisplatin-induced acute kidney injury. Mol Basel Switz. 2021;26(19):5931.

    CAS  Google Scholar 

  172. Mohamed HE, Badawy MMM. Modulatory effect of zingerone against cisplatin or γ-irradiation induced hepatotoxicity by molecular targeting regulation. Appl Radiat Isot Data Instrum Methods Use Agric Ind Med. 2019;154: 108891.

    CAS  Google Scholar 

  173. Moradi M, Goodarzi N, Faramarzi A, Cheraghi H, Hashemian AH, Jalili C. Melatonin protects rats testes against bleomycin, etoposide, and cisplatin-induced toxicity via mitigating nitro-oxidative stress and apoptosis. Biomed Pharmacother Biomedecine Pharmacother. 2021;138: 111481.

    Article  CAS  Google Scholar 

  174. Zhuo X, Jiang H. Protective effects of melatonin in cisplatin-induced cardiac toxicity: possible role of BDNF-TNF-α signaling pathway. Acta Cirúrgica Bras. 2022;37: e370208.

    Article  Google Scholar 

  175. Yilmaz I, Demiryilmaz I, Turan MI, Suleyman B, Turan IS, Altuner D, et al. The protective effect of melatonin and agomelatin against cisplatin-induced nephrotoxicity and oxidative stress in the rat kidney. Lat Am J Pharm. 2013;32:1231.

  176. Ko JW, Shin NR, Jung TY, Shin IS, Moon C, Kim SH, et al. Melatonin attenuates cisplatin-induced acute kidney injury in rats via induction of anti-aging protein, Klotho. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2019;129:201–10.

    Article  CAS  Google Scholar 

  177. Ali BH, Abdelrahman A, Al Suleimani Y, Manoj P, Ali H, Nemmar A, et al. Effect of concomitant treatment of curcumin and melatonin on cisplatin-induced nephrotoxicity in rats. Biomed Pharmacother Biomedecine Pharmacother. 2020;131: 110761.

    Article  CAS  Google Scholar 

  178. Soetikno V, Sari SDP, Ul Maknun L, Sumbung NK, Rahmi DNI, Pandhita BAW, et al. Pre-treatment with curcumin ameliorates cisplatin-induced kidney damage by suppressing kidney inflammation and apoptosis in rats. Drug Res. 2019;69(2):75–82.

    Article  CAS  Google Scholar 

  179. Abd El-Kader M, Taha RI. Comparative nephroprotective effects of curcumin and etoricoxib against cisplatin-induced acute kidney injury in rats. Acta Histochem. 2020;122(4): 151534.

    Article  CAS  PubMed  Google Scholar 

  180. Abo-Elmaaty AMA, Behairy A, El-Naseery NI, Abdel-Daim MM. The protective efficacy of vitamin E and cod liver oil against cisplatin-induced acute kidney injury in rats. Environ Sci Pollut Res Int. 2020;27(35):44412–26.

    Article  CAS  PubMed  Google Scholar 

  181. Rosic G, Srejovic I, Zivkovic V, Selakovic D, Joksimovic J, Jakovljevic V. The effects of N-acetylcysteine on cisplatin-induced cardiotoxicity on isolated rat hearts after short-term global ischemia. Toxicol Rep. 2015;2:996–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Coşkun Ö, Öztopuz Ö, Büyük B. Possible protective activity of n-acetyl cysteine against cisplatin-induced hepatotoxicity in rats. Mol Biol Rep. 2021;48(1):637–44.

    Article  PubMed  Google Scholar 

  183. Bishr A, Sallam N, Nour El-Din M, Awad AS, Kenawy SA. Ambroxol attenuates cisplatin-induced hepatotoxicity and nephrotoxicity via inhibition of p-JNK/p-ERK. Can J Physiol Pharmacol. 2019;97(1):55–64.

    Article  CAS  PubMed  Google Scholar 

  184. Ali DA, Abdeen AM, Ismail MF, Mostafa MA. Histological, ultrastructural and immunohistochemical studies on the protective effect of ginger extract against cisplatin-induced nephrotoxicity in male rats. Toxicol Ind Health. 2015;31(10):869–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB), grant number: BOL0472/2021 and BOL0766/2023 and Institutional Program of Scientific Initiation Scholarship (PIBIC) from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), grant number: 01/2023 and Universidade Federal da Bahia (UFBA), grand number: 01/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liliany Souza de Brito Amaral.

Ethics declarations

Conflict of interest

All authors have read the journal's authorship agreement and policy and declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, C.A., Mercês, É.A.B., Portela, F.S. et al. An integrated view of cisplatin-induced nephrotoxicity, hepatotoxicity, and cardiotoxicity: characteristics, common molecular mechanisms, and current clinical management. Clin Exp Nephrol (2024). https://doi.org/10.1007/s10157-024-02490-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10157-024-02490-x

Keywords

Navigation