Skip to main content
Log in

The Application of Controlled/Living Radical Polymerization in Modification of PVDF-based Fluoropolymer

  • Review
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Fluorinated polymers are important materials that are widely used in many areas as taking the advantage of inertness to chemical corrosion, prominent weather resistance, low flammability, and good thermal stability. Poly(vinylidene fluoride) (PVDF) based fluoropolymers is the most common type of commercial fluoropolymer especially used as dielectric materials. However, there are always some shortcomings in practical applications, so it is necessary to modify PVDF-based fluoropolymers for better application. Controlled/living radical polymerization (CRP) and related techniques have become a powerful approach to tailoring the chemical and physical properties of materials and have given rise to great advances in modification of PVDF-based fluoropolymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corrigan, N.; Jung, K.; Moad, G.; Hawker, C. J.; Matyjaszewski, K.; Boyer, C. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 2020, 111, 101311.

    Article  CAS  Google Scholar 

  2. Yeow, J.; Chapman, R.; Gormley, A. J.; Boyer, C. Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chem. Soc. Rev. 2018, 47, 4357–4387.

    Article  CAS  PubMed  Google Scholar 

  3. Ouchi, M.; Sawamoto, M. 50th Anniversary perspective: metal-catalyzed living radical polymerization: discovery and perspective. Macromolecules 2017, 50, 2603–2614.

    Article  CAS  Google Scholar 

  4. Anastasaki, A.; Nikolaou, V.; Nurumbetov, G.; Wilson, P.; Kempe, K.; Quinn, J. F.; Davis, T. P.; Whittaker, M. R.; Haddleton, D. M. Cu(0)-mediated living radical polymerization: a versatile tool for materials synthesis. Chem. Rev. 2016, 116, 835–877.

    Article  CAS  PubMed  Google Scholar 

  5. Zetterlund, P. B.; Thickett, S. C.; Perrier, S.; Bourgeat-Lami, E.; Lansalot, M. Controlled/living radical polymerization in dispersed systems: an update. Chem. Rev. 2015, 115, 9745–9800.

    Article  CAS  PubMed  Google Scholar 

  6. Poli, R.; Allan, L. E. N.; Shaver, M. P. Iron-mediated reversible deactivation controlled radical polymerization. Prog. Polym. Sci. 2014, 39, 1827–1845.

    Article  CAS  Google Scholar 

  7. Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. Nitroxide-mediated polymerization. Prog. Polym. Sci. 2013, 38, 63–235.

    Article  CAS  Google Scholar 

  8. Bagheri, A.; Fellows, C. M.; Boyer, C. Reversible deactivation radical polymerization: from polymer network synthesis to 3D printing. Adv. Sci. 2021, 8, 2003701.

    Article  CAS  Google Scholar 

  9. An, Z.; Zhu, S.; An, Z. Heterogeneous photocatalytic reversible deactivation radical polymerization. Polym. Chem. 2021, 12, 2357–2373.

    Article  CAS  Google Scholar 

  10. Gong, H.; Gu, Y.; Chen, M. Controlled/living radical polymerization of semifluorinated (meth)acrylates. Synlett 2018, 29, 1543–1551.

    Article  CAS  Google Scholar 

  11. Zoppe, J. O.; Ataman, N. C.; Mocny, P.; Wang, J.; Moraes, J.; Klok, H. A. Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem. Rev. 2017, 117, 1105–1318.

    Article  CAS  PubMed  Google Scholar 

  12. Ogura, Y.; Takenaka, M.; Sawamoto, M.; Terashima, T. Fluorous gradient copolymers via in-situ transesterification of a perfluoromethacrylate in tandem living radical polymerization: precision synthesis and physical properties. Macromolecules 2018, 51, 864–871.

    Article  CAS  Google Scholar 

  13. Ogura, Y.; Terashima, T.; Sawamoto, M. Amphiphilic PEG-functionalized gradient copolymers via tandem catalysis of living radical polymerization and transesterification. Macromolecules 2017, 50, 822–831.

    Article  CAS  Google Scholar 

  14. Ren, J. M.; McKenzie, T. G.; Fu, Q.; Wong, E. H. H.; Xu, J.; An, Z.; Shanmugam, S.; Davis, T. P.; Boyer, C.; Qiao, G. G. Star polymers. Chem. Rev. 2016, 116, 6743–6836.

    Article  CAS  PubMed  Google Scholar 

  15. Jennings, J.; He, G.; Howdle, S. M.; Zetterlund, P. B. Block copolymer synthesis by controlled/living radical polymerization in heterogeneous systems. Chem. Soc. Rev. 2016, 45, 5055–5084.

    Article  CAS  PubMed  Google Scholar 

  16. Messina, M. S.; Messina, K. M. M.; Bhattacharya, A.; Montgomery, H. R.; Maynard, H. D. Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP. Prog. Polym. Sci. 2020, 100, 101186.

    Article  CAS  PubMed  Google Scholar 

  17. Keddie, D. J. A guide to the synthesis of block copolymers using reversible-addition fragmentation chain transfer (RAFT) polymerization. Chem. Soc. Rev. 2014, 43, 496–505.

    Article  CAS  PubMed  Google Scholar 

  18. Siegwart, D. J.; Oh, J. K.; Matyjaszewski, K. ATRP in the design of functional materials for biomedical applications. Prog. Polym. Sci. 2012, 37, 18–37.

    Article  CAS  PubMed  Google Scholar 

  19. Navarro, L. A.; Enciso, A. E.; Matyjaszewski, K.; Zauscher, S. Enzymatically degassed surface-initiated atom transfer radical polymerization with real-time monitoring. J. Am. Chem. Soc. 2019, 141, 3100–3109.

    Article  CAS  PubMed  Google Scholar 

  20. Ran, J.; Wu, L.; Zhang, Z.; Xu, T. Atom transfer radical polymerization (ATRP): a versatile and forceful tool for functional membranes. Prog. Polym. Sci. 2014, 39, 124–144.

    Article  CAS  Google Scholar 

  21. Matyjaszewski, K. Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 2012, 45, 4015–4039.

    Article  CAS  Google Scholar 

  22. Whitfield, R.; Parkatzidis, K.; Bradford, K. G. E.; Truong, N. P.; Konkolewicz, D.; Anastasaki, A. Low ppm CuBr-triggered atom transfer radical polymerization under mild conditions. Macromolecules 2021, 54, 3075–3083.

    Article  CAS  Google Scholar 

  23. Zhou, Y. N.; Li, J. J.; Wu, Y. Y.; Luo, Z. H. Role of external field in polymerization: mechanism and kinetics. Chem. Rev. 2020, 120, 2950–3048.

    Article  CAS  PubMed  Google Scholar 

  24. Pan, X.; Fantin, M.; Yuan, F.; Matyjaszewski, K. Externally controlled atom transfer radical polymerization. Chem. Soc. Rev. 2018, 47, 5457–5490.

    Article  CAS  PubMed  Google Scholar 

  25. Chmielarz, P.; Fantin, M.; Park, S.; Isse, A. A.; Gennaro, A.; Magenau, A. J. D.; Sobkowiak, A.; Matyjaszewski, K. Electrochemically mediated atom transfer radical polymerization (eATRP). Prog. Polym. Sci. 2017, 69, 47–78.

    Article  CAS  Google Scholar 

  26. Szczepaniak, G.; Fu, L.; Jafari, H.; Kapil, K.; Matyjaszewski, K. Making ATRP more practical: oxygen tolerance. Acc. Chem. Res. 2021, 54, 1779–1790.

    Article  CAS  PubMed  Google Scholar 

  27. Wang, G.; Wang, Z.; Lee, B.; Yuan, R.; Lu, Z.; Yan, J.; Pan, X.; Song, Y.; Bockstaller, M. R.; Matyjaszewski, K. Polymerization-induced self-assembly of acrylonitrile via ICAR ATRP. Polymer 2017, 129, 57–67.

    Article  CAS  Google Scholar 

  28. Abreu, C. M. R.; Fu, L.; Carmali, S.; Serra, A. C.; Matyjaszewski, K.; Coelho, J. F. J. Aqueous SARA ATRP using inorganic sulfites. Polym. Chem. 2017, 8, 375–387.

    Article  CAS  PubMed  Google Scholar 

  29. Wang, G.; Schmitt, M.; Wang, Z.; Lee, B.; Pan, X.; Fu, L.; Yan, J.; Li, S.; Xie, G.; Bockstaller, M. R.; Matyjaszewski, K. Polymerization-induced self-assembly (PISA) using ICAR ATRP at low catalyst concentration. Macromolecules 2016, 49, 8605–8615.

    Article  CAS  Google Scholar 

  30. Song, Y.; Ye, G.; Lu, Y.; Chen, J.; Wang, J.; Matyjaszewski, K. Surface-initiated ARGET ATRP of poly(glycidyl methacrylate) from carbon nanotubes via bioinspired catechol chemistry for efficient adsorption of uranium ions. ACS Macro Lett. 2016, 5, 382–386.

    Article  CAS  Google Scholar 

  31. Krys, P.; Wang, Y.; Matyjaszewski, K.; Harrisson, S. Radical generation and termination in SARA ATRP of methyl acrylate: effect of solvent, ligand, and chain length. Macromolecules 2016, 49, 2977–2984.

    Article  CAS  Google Scholar 

  32. Pan, X.; Fang, C.; Fantin, M.; Malhotra, N.; So, W. Y.; Peteanu, L. A.; Isse, A. A.; Gennaro, A.; Liu, P.; Matyjaszewski, K. Mechanism of photoinduced metal-free atom transfer radical polymerization: experimental and computational studies. J. Am. Chem. Soc. 2016, 138, 2411–2425.

    Article  CAS  PubMed  Google Scholar 

  33. O’Donnell, J. M. Reversible addition-fragmentation chain transfer polymerization in microemulsion. Chem. Soc. Rev. 2012, 41, 3061–3076.

    Article  PubMed  CAS  Google Scholar 

  34. Gregory, A.; Stenzel, M. H. Complex polymer architectures via RAFT polymerization: from fundamental process to extending the scope using click chemistry and nature’s building blocks. Prog. Polym. Sci. 2012, 37, 38–105.

    Article  CAS  Google Scholar 

  35. Li, R.; An, Z. Achieving ultrahigh molecular weights with diverse architectures for unconjugated monomers through oxygen-tolerant photoenzymatic RAFT polymerization. Angew. Chem. Int. Ed. 2020, 59, 22258–22264.

    Article  CAS  Google Scholar 

  36. Shen, L.; Guo, H.; Zheng, J.; Wang, X.; Yang, Y.; An, Z. RAFT polymerization-induced self-assembly as a strategy for versatile synthesis of semifluorinated liquid-crystalline block copolymer nanoobjects. ACS Macro Lett. 2018, 7, 287–292.

    Article  CAS  Google Scholar 

  37. Liu, Z.; Lv, Y.; An, Z. Enzymatic cascade catalysis for the synthesis of multiblock and ultrahigh-molecular-weight polymers with oxygen tolerance. Angew. Chem. Int. Ed. 2017, 56, 13852–13856.

    Article  CAS  Google Scholar 

  38. Gong, H.; Gu, Y.; Zhao, Y.; Quan, Q.; Han, S.; Chen, M. Precise synthesis of ultra-high-molecular-weight fluoropolymers enabled by chain-transfer-agent differentiation under visible-light irradiation. Angew. Chem. Int. Ed. 2020, 59, 919–927.

    Article  CAS  Google Scholar 

  39. Gong, H.; Zhao, Y.; Shen, X.; Lin, J.; Chen, M. Organocatalyzed photocontrolled radical polymerization of semifluorinated (meth)acrylates driven by visible light. Angew. Chem. Int. Ed. 2018, 57, 333–337.

    Article  CAS  Google Scholar 

  40. Lee, K.; Corrigan, N.; Boyer, C. Rapid high-resolution 3D printing and surface functionalization via type I photoinitiated RAFT polymerization. Angew. Chem. Int. Ed. 2021, 60, 8839–8850.

    Article  CAS  Google Scholar 

  41. Wu, C.; Jung, K.; Ma, Y.; Liu, W.; Boyer, C. Unravelling an oxygen-mediated reductive quenching pathway for photopolymerisation under long wavelengths. Nat. Commun. 2021, 12, 478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fukada, E.; Takashita, S. Piezoelectric effect in polarized poly(vinylidene fluoride). JPn. J. Appl. Phys. 1969, 8, 960–960.

    Article  CAS  Google Scholar 

  43. Lu, L.; Ding, W.; Liu, J.; Yang, B. Flexible PVDF based piezoelectric nanogenerators. Nano Energy 2020, 78, 105251.

    Article  CAS  Google Scholar 

  44. Kalimuldina, G.; Turdakyn, N.; Abay, I.; Medeubayev, A.; Nurpeissova, A.; Adair, D.; Bakenov, Z. A review of piezoelectric PVDF film by electrospinning and its applications. Sensors 2020, 20, 5214.

    Article  CAS  PubMed Central  Google Scholar 

  45. Kalani, S.; Kohandani, R.; Bagherzadeh, R. Review on flexible electrospun polyvinylidene fluoride-barium titanate hybrid structure pressure sensor with enhanced efficiency. RSC Adv. 2020, 10, 35090–35098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan, J.; Liu, M.; Jeong, Y. G.; Kang, W.; Li, L.; Zhao, Y.; Deng, N.; Cheng, B.; Yang, G. Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy 2019, 56, 662–692.

    Article  CAS  Google Scholar 

  47. Barbosa, J. C.; Dias, J. P.; Lanceros-Mendez, S.; Costa, C. M. Recent advances in poly(vinylidene fluoride) and its copolymers for lithium-ion battery separators. Membranes 2018, 8, 45.

    Article  PubMed Central  CAS  Google Scholar 

  48. Chen, X.; Han, X.; Shen, Q. D. PVDF-based ferroelectric polymers in modern flexible electronics. Adv. Electron. Mater. 2017, 3, 1600460.

    Article  CAS  Google Scholar 

  49. Xin, Y.; Sun, H.; Tian, H.; Guo, C.; Li, X.; Wang, S.; Wang, C. The use of polyvinylidene fluoride (PVDF) films as sensors for vibration measurement: a brief review. Ferroelectrics 2016, 502, 28–42.

    Article  CAS  Google Scholar 

  50. Gardiner, J. Fluoropolymers: origin, production, and industrial and commercial applications. Aust. J. Chem. 2015, 68, 13–22.

    Article  CAS  Google Scholar 

  51. Martins, P.; Lopes, A. C.; Lanceros-Mendez, S. Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 2014, 39, 683–706.

    Article  CAS  Google Scholar 

  52. Wang, Y.; Zhou, X.; Chen, Q.; Chu, B.; Zhang, Q. Recent development of high energy density polymers for dielectric capacitors. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1036–1042.

    Article  CAS  Google Scholar 

  53. Zhu, L.; Wang, Q. Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 2012, 45, 2937–2954.

    Article  CAS  Google Scholar 

  54. Cui, Z.; Hassankiadeh, N. T.; Zhuang, Y.; Drioli, E.; Lee, Y. M. Crystalline polymorphism in poly(vinylidenefluoride) membranes. Prog. Polym. Sci. 2015, 51, 94–126.

    Article  CAS  Google Scholar 

  55. Ameduri, B. From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. Chem. Rev. 2009, 109, 6632–6686.

    Article  CAS  PubMed  Google Scholar 

  56. Kalfoglou, N. K.; Williams, H. L. Mechanical relaxations of poly(vinylidene fluoride) and some of its copolymers. J. Appl. Polym. Sci. 1973, 17, 3367–3373.

    Article  CAS  Google Scholar 

  57. Wang, Z.; Zhang, Z.; Chung, T. C. M. High dielectric VDF/TrFE/CTFE terpolymers prepared by hydrogenation of VDF/CTFE copolymers: synthesis and characterization. Macromolecules 2006, 39, 4268–4271.

    Article  CAS  Google Scholar 

  58. Wang, Y.; Yao, M.; Ma, R.; Yuan, Q.; Yang, D.; Cui, B.; Ma, C.; Liu, M.; Hu, D. Design strategy of barium titanate/polyvinylidene fluoride-based nanocomposite films for high energy storage. J. Mater. Chem. A 2020, 8, 884–917.

    Article  CAS  Google Scholar 

  59. Wan, C.; Bowen, C. R. Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro-and macro-structure. J. Mater. Chem. A 2017, 5, 3091–3128.

    Article  CAS  Google Scholar 

  60. Zhang, Z.; Chung, T. C. M. Study of VDF/TrFE/CTFE terpolymers for high pulsed capacitor with high energy density and low energy loss. Macromolecules 2007, 40, 783–785.

    Article  CAS  Google Scholar 

  61. Lu, Y.; Claude, J.; Zhang, Q.; Wang, Q. Microstructures and dielectric properties of the ferroelectric fluoropolymers synthesized via reductive dechlorination of poly(vinylidene fluoride-co-chlorotrifluoroethylene)s. Macromolecules 2006, 39, 6962–6968.

    Article  CAS  Google Scholar 

  62. Lu, Y.; Claude, J.; Neese, B.; Zhang, Q.; Wang, Q. A Modular approach to ferroelectric polymers with chemically tunable curie temperatures and dielectric constants. J. Am. Chem. Soc. 2006, 128, 8120–8121.

    Article  CAS  PubMed  Google Scholar 

  63. Chu, B.; Zhou, X.; Ren, K.; Neese, B.; Lin, M.; Wang, Q.; Bauer, F.; Zhang, Q. M. A dielectric polymer with high electric energy density and fast discharge speed. Science 2006, 313(5785), 334–336.

    Article  CAS  PubMed  Google Scholar 

  64. Li, Z.; Wang, Y.; Cheng, Z. Y. Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer. Appl. Phys. Lett. 2006, 88, 062904.

    Article  CAS  Google Scholar 

  65. Améduri, B.; Boutevin, B.; Kostov, G. Fluoroelastomers: synthesis, properties and applications. Prog. Polym. Sci 2001, 26, 105–187.

    Article  Google Scholar 

  66. Cho, K. Y.; Jung, H. Y.; Sung, K. A.; Kim, W. K.; Sung, S. J.; Park, J. K.; Choi, J. H.; Sung, Y. E. Preparation and charateristics of Nafion membrane coated with a PVDF copolymer/recast Nafion blend for direct methanol fuel cell. J. Power Sources 2006, 159, 524–528.

    Article  CAS  Google Scholar 

  67. Wang, M.; Zhao, F.; Dong, S. A single ionic conductor based on nafion and its electrochemical properties used as lithium polymer electrolyte. J. Phys. Chem. B 2004, 108, 1365–1370.

    Article  CAS  Google Scholar 

  68. Cheng, C. L.; Wan, C. C.; Wang, Y. Y. Microporous PVDF-HFP based gel polymer electrolytes reinforced by PEGDMA network. Electrochem. Commun. 2004, 6, 531–535.

    Article  CAS  Google Scholar 

  69. Lovinger, A. J.; Johnson, G. E.; Bair, H. E.; Anderson, E. W. Structural, dielectric, and thermal investigation of the Curie transition in a tetrafluoroethylene copolymer of vinylidene fluoride. J. Appl. Phys. 1984, 56, 2412–2418.

    Article  CAS  Google Scholar 

  70. Lovinger, A. J.; Furukawa, T.; Davis, G. T.; Broadhurst, M. G. Crystallographic changes characterizing the Curie transition in three ferroelectric copolymers of vinylidene fluoride and trifluoroethylene: 2. Oriented or poled samples. Polymer 1983, 24, 1233–1239.

    Article  CAS  Google Scholar 

  71. Ohigashi, H.; Koga, K. Ferroelectric copolymers of vinylidenefluoride and trifluoroethylene with a large electromechanical coupling factor. JPn. J. Appl. Phys. 1982, 21, L455.

    Article  CAS  Google Scholar 

  72. Li, J.; Gong, H.; Yang, Q.; Xie, Y.; Yang, L.; Zhang, Z. Linear-like dielectric behavior and low energy loss achieved in poly(ethyl methacrylate) modified poly(vinylidene-co-trifluoroethylene). Appl. Phys. Lett. 2014, 104, 263901.

    Article  CAS  Google Scholar 

  73. Li, J.; Hu, X.; Gao, G.; Ding, S.; Li, H.; Yang, L.; Zhang, Z. Tuning phase transition and ferroelectric properties of poly(vinylidene fluoride-co-trifluoroethylene) via grafting with desired poly(methacrylic ester)s as side chains. J. Mater. Chem. C 2013, 1, 1111–1121.

    Article  CAS  Google Scholar 

  74. Li, J.; Tan, S.; Ding, S.; Li, H.; Yang, L.; Zhang, Z. High-field antiferroelectric behaviour and minimized energy loss in poly (vinylidene-co-trifluoroethylene)-graft-poly(ethyl methacrylate) for energy storage application. J. Mater. Chem. 2012, 22, 23468–23476.

    Article  CAS  Google Scholar 

  75. Zhang M. F.; Russell T. P. Graft copolymers from poly(vinylidene fluoride-co-chlorotrifluoroethylene) via atom transfer radical polymerization. Macromolecules 2006, 39, 3513–3539.

    Google Scholar 

  76. Guan, F.; Wang, J.; Yang, L.; Tseng, J. K.; Han, K.; Wang, Q.; Zhu, L. Confinement-induced high-field antiferroelectric-like behavior in a poly(vinylidene fluoride-co-trifluoroethylene-co-chlorotriflu-oroethylene)-grart-polystyrene graft copolymer. Macromolecules 2011, 44, 2190–2199.

    Article  CAS  Google Scholar 

  77. Guan, F.; Yang, L.; Wang, J.; Guan, B.; Han, K.; Wang, Q.; Zhu, L. Confined ferroelectric properties in poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-polystyrene graft copolymers for electric energy storage applications. Adv. Funct. Mater. 2011, 21, 3176–3188.

    Article  CAS  Google Scholar 

  78. Yang, L.; Allahyarov, E.; Guan, F.; Zhu, L. Crystal orientation and temperature effects on double hysteresis loop behavior in a poly(vinylidenefluoride-co-trifluoroethylene-co-chlorotrifluoroe-thylene)-graft-polystyrene graft copolymer. Macromolecules 2013, 46, 9698–9711.

    Article  CAS  Google Scholar 

  79. Hu, X.; Li, J.; Li, H.; Zhang, Z. Synthesis and characterization of poly(vinylidene fluoride-co-chlorotrifluoroethylene)-grafted-poly(acrylonitrile) via single electron transfer-living radical polymerization process. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3126–3134.

    Article  CAS  Google Scholar 

  80. Hu, X.; Li, J.; Li, H.; Zhang, Z. Cu(0)/2,6-bis(imino)pyridines catalyzed single-electron transfer-living radical polymerization of methyl methacrylate initiated with poly(vinylidene fluoride-co-chlorotrifluoroethylene). J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4378–4388.

    Article  CAS  Google Scholar 

  81. Gong, H.; Li, J.; Di, D.; Li, N.; Zhang, Z. Influence of less active initiator on the living performance of atom transfer radical polymerization and the structure of the synthesized grafted copolymer. RSC Adv. 2015, 5, 19117–19127.

    Article  CAS  Google Scholar 

  82. Gong, H.; Zhang, X.; Zhang, Y.; Zheng, A.; Tan, S.; Zhang, Z. Chemical composition characterization of poly(vinylidene fluoride-chlorotrifluoroethylene)-based copolymers with F-H decoupled 1H NMR. RSC Adv. 2016, 6, 75880–75889.

    Article  CAS  Google Scholar 

  83. Gong, H.; Miao, B.; Zhang, X.; Lu, J.; Zhang, Z. High-field antiferroelectric-like behavior in uniaxially stretched poly(vin-ylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)-grafted-poly(methyl methacrylate) films with high energy density. RSC Adv. 2016, 6, 1589–1599.

    Article  CAS  Google Scholar 

  84. Park B. J.; Kim N. U.; Ryu D. Y.; Kim J. H. P (VDF-co-CTFE)-g-P2VP amphiphilic graft copolymers: synthesis, structure, and permeation properties. Polym. Adv. Technol. 2019, 30, 2707–2720.

    Article  CAS  Google Scholar 

  85. Zhang, M.; Russell, T. P. Graft copolymers from poly(vinylidene fluoride-co-chlorotrifluoroethylene) via atom transfer radical polymerization. Macromolecules 2006, 39, 3531–3539.

    Article  CAS  Google Scholar 

  86. Valade, D.; Boyer, C.; Ameduri, B.; Boutevin, B. Poly(vinylidene fluoride)-b-poly(styrene) block copolymers by iodine transfer polymerization (ITP): synthesis, characterization, and kinetics of ITP. Macromolecules 2006, 39, 8639–8651.

    Article  CAS  Google Scholar 

  87. Destarac, M.; Matyjaszewski, K.; Silverman, E.; Ameduri, B.; Boutevin, B. Atom transfer radical polymerization initiated with vinylidene fluoride telomers. Macromolecules 2000, 33, 4613–4615.

    Article  CAS  Google Scholar 

  88. Hester, J. F.; Banerjee, P.; Won, Y. Y.; Akthakul, A.; Acar, M. H.; Mayes, A. M. ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives. Macromolecules 2002, 35, 7652–7661.

    Article  CAS  Google Scholar 

  89. Samanta, S.; Chatterjee, D. P.; Layek, R. K.; Nandi, A. K. Multifunctional porous poly(vinylidene fluoride)-graft-poly(butyl methacrylate) with good Li+ ion conductivity. Macromol. Chem. Phys. 2011, 212, 134–149.

    Article  CAS  Google Scholar 

  90. Samanta, S.; Chatterjee, D. P.; Manna, S.; Mandal, A.; Garai, A.; Nandi, A. K. Multifunctional hydrophilic poly(vinylidene fluoride) graft copolymer with supertoughness and supergluing properties. Macromolecules 2009, 42, 3112–3120.

    Article  CAS  Google Scholar 

  91. Shen, J.; Zhang, Q.; Yin, Q.; Cui, Z.; Li, W.; Xing, W. Fabrication and characterization of amphiphilic PVDF copolymer ultrafiltration membrane with high anti-fouling property. J. Membr. Sci. 2017, 521, 93–103.

    Article  CAS  Google Scholar 

  92. Xue, J.; Chen, L.; Wang;, H. L.; Zhang Z. B.; Zhu, X. L.; Kang, E. T.; Neoh, K. G. Stimuli-responsive multifunctional membranes of controllable morphology from poly(vinylidene fluoride)-grarft-poly[2-(N, N-dimethylamino)ethyl methacrylate] prepared via atom transfer radical polymerization. Langmuir 2008, 24, 14151–14158.

    Article  CAS  PubMed  Google Scholar 

  93. Atanu, K.; Dhruba, P. C.; Nabasmita, M.; Arun, K. N. Multifunctional poly(vinylidene fluoride) graft copolymers. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2569–2584.

    Article  CAS  Google Scholar 

  94. Zhao, T.; Zhang, L.; Zhang, Z.; Zhou, N.; Cheng, Z.; Zhu, X. A novel approach to modify poly(vinylidene fluoride) via iron-mediated atom transfer radical polymerization using activators generated by electron transfer. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 2315–2324.

    Article  CAS  Google Scholar 

  95. Tan, S.; Zhang, Y.; Niu, Z.; Zhang, Z. Copper(0) mediated single electron transfer controlled radical polymerization toward C-F bonds on poly(vinylidene fluoride). Macromol. Rapid Commun. 2018, 39, 1700561.

    Article  CAS  Google Scholar 

  96. Peng, B.; Wang, J.; Li, M.; Wang, M.; Tan, S.; Zhang, Z. Activation of different C-F bonds in fluoropolymers for Cu(0)-mediated single electron transfer radical polymerization. Polym. Chem. 2021, 12, 3132–3141.

    Article  CAS  Google Scholar 

  97. Duan, Y.; Li, Q.; Peng, B.; Tan, S.; Zhang, Z. Grafting modification of poly(vinylidene fluoride-hexafluoropropylene) via Cu(0) mediated controlled radical polymerization. React. Funct. Polym. 2021, 164, 104939.

    Article  CAS  Google Scholar 

  98. Li F.; Jia Y.; Guo R.; Wang M. Preparation of composite anionexchange membrane with acid-blocking performance for brine reclamation by bipolar membrane electrodialysis. Sep. Purif. Technol. 2020, 254, 117587.

    Article  CAS  Google Scholar 

  99. Burcu, O.; Mustafa, Hulusi U.; Nilhan, Kayaman A. Preparation of poly (bis[2-(methacryloyloxy)ethyl] phosphate) crosslinked polymer brushes on poly(vinylidene fluoride) nanofibers. Mater. Chem. Phys. 2018, 217, 168–174.

    Article  CAS  Google Scholar 

  100. Meng, P.; Xingran, Z.; Mingxian, L.; Zhichao, W.; Zhiwei, W. Surface modification of polyvinylidene fluoride membrane by atom-transfer radical-polymerization of quaternary ammonium compound for mitigating biofouling. J. Membr. Sci. 2018, 570–571, 286–293.

    Google Scholar 

  101. Yiwang, C.; Lei, Y.; Weihong, Y.; Kang, E. T.; Neoh, K. G. Poly(vinylidene fluoride) with grafted poly(ethylene glycol) side chains via the RAFT-mediated process and pore size control of the copolymer membranes. Macromolecules 2003, 36, 9451–9457.

    Article  CAS  Google Scholar 

  102. Ying, L.; Yu, W. H.; Kang, E. T.; Neoh, K. G. Functional and surface-active membranes from poly(vinylidene fluoride)-graft-poly(acrylic acid) prepared via RAFT-mediated graft copolymerization. Langmuir 2004, 20, 6032–6040.

    Article  CAS  PubMed  Google Scholar 

  103. Xue, L.; Xuefeng, H.; Tao, C. Construction of hierarchical fouling resistance surfaces onto poly(vinylidene fluoride) membranes for combating membrane biofouling. Langmuir 2017, 33, 4477–4489.

    Article  CAS  Google Scholar 

  104. Marc, G.; Rahaman, S. M. W.; Bruno, A.; Rinaldo, P.; Vincent, L. Limits of vinylidene fluoride RAFT polymerization. Macromolecules 2016, 49, 5386–5396.

    Article  CAS  Google Scholar 

  105. Marc, G.; Gérald, L.; Thibaut, S.; Cédric, T.; Bruno, A.; Gilles, S.; Vincent, L. A journey into the microstructure of PVDF made by RAFT. Macromol. Chem. Phys. 2016, 217, 2275–2285.

    Article  CAS  Google Scholar 

  106. Marc, G.; Rahaman, S. M. W.; Bruno, A.; Rinaldo, P.; Vincent, L. RAFT synthesis of well-defined PVDF-b-PVAc block copolymers. Polym. Chem. 2016, 7, 6918–6933.

    Article  CAS  Google Scholar 

  107. Marc, G.; Mona, S.; Franck, G.; Bruno, A.; Vincent, L. Polymerization-induced self-assembly of PVAc-b-PVDF block copolymers via RAFT dispersion polymerization of vinylidene fluoride in dimethyl carbonate. Polym. Chem. 2017, 8, 1477–1487.

    Article  CAS  Google Scholar 

  108. Fatima, Ezzahra B.; Mustapha, R.; Gilles, S.; Cedric, T.; Bruno, A. Core-shell structured poly(vinylidene fluoride)-grafted-BaTiO3 nanocomposites prepared via reversible addition-fragmentation chain transfer (RAFT) polymerization of VDF for high energy storage capacitors. Polym. Chem. 2019, 10, 891–904.

    Article  Google Scholar 

  109. Holmberg, S.; Holmlund, P.; Nicolas, R.; Wilén, C. E.; Kallio, T.; Sundholm, G.; Sundholm, F. Versatile synthetic route to tailor-made proton exchange membranes for fuel cell applications by combination of radiation chemistry of polymers with nitroxide-mediated living free radical graft polymerization. Macromolecules 2004, 37, 9909–9915.

    Article  CAS  Google Scholar 

  110. Chen, J.; Tan, S.; Gao, G.; Li, H.; Zhang, Z. Synthesis and characterization of thermally self-curable fluoropolymer triggered by TEMPO in one pot for high performance rubber applications. Polym. Chem. 2014, 5, 2130–2141.

    Article  CAS  Google Scholar 

  111. Lienafa, L.; Monge, S.; Guillaneuf, Y.; Ameduri, B.; Siri, D.; Gigmes, D.; Robin, J. J. Preparation of PVDF-grafted-PS involving nitroxides. Eur. Polym. J. 2018, 109, 55–63.

    Article  CAS  Google Scholar 

  112. Tao, C.; Neoh, K. G.; Kang, E. T.; Teo, S. L. M. Surface-functionalized and surface-functionalizable poly(vinylidene fluoride) graft copolymer membranes via click chemistry and atom transfer radical polymerization. Langmuir 2011, 27, 2936–2945.

    Article  CAS  Google Scholar 

  113. Cai, T.; Neoh, K. G.; Kang, E. T. Surface-functionalized and surface-functionalizable poly(vinylidene fluoride) membranes via controlled/living radical polymerization and click chemistry. In Progress in Controlled Radical Polymerization: Materias and Applications, American Chemical Society: 2012; 1101, 211–229.

  114. Vukićević, R.; Schwadtke, U.; Schmücker, S.; Schäfer, P.; Kuckling, D.; Beuermann, S. Alkyne-azide coupling of tailored poly(vinylidene fluoride) and polystyrene for the synthesis of block copolymers. Polym. Chem. 2012, 3, 409–414.

    Article  Google Scholar 

  115. Fei, H.; Baiwen, L.; Shaojun, Y.; Bin, L.; Cleo, C.; Simo, Olavi P. PVDF film tethered with RGD-click-poly(glycidyl methacrylate) brushes by combination of direct surface-initiated ATRP and click chemistry for improved cytocompatibility. RSC Adv. 2014, 4, 105–117.

    Article  Google Scholar 

  116. Marc, G.; Mona, S.; Cedric, T.; Gilles, S.; Bruno, A.; Vincent, L. Self-assembly of poly(vinylidene fluoride)-block-poly(2-(dimethylamino)ethylmethacrylate) block copolymers prepared by CuAAC click coupling. Polym. Chem. 2017, 8, 5203–5211.

    Article  Google Scholar 

  117. Yogesh, P.; Panayiotis, B.; George, P.; Sarah, A.; Nikos, H.; Valentin, R. A novel poly(vinylidene fluoride)-based 4-miktoarm star terpolymer: synthesis and self-assembly. Mol. Pharm. 2018, 15, 3005–3009.

    Article  CAS  Google Scholar 

  118. Zhao, Y.; Gong, H.; Jiang, K.; Yan, S.; Lin, J.; Chen, M. Organocatalyzed photoredox polymerization from aromatic sulfonyl halides: facilitating graft from aromatic C-H bonds. Macromolecules 2018, 51, 938–946.

    Article  CAS  Google Scholar 

  119. Hu, X.; Zhang, Y.; Cui, G.; Zhu, N.; Guo, K. Poly(vinylidene) fluoride-co-chlorotrifluoroethylene) modification via organocatalyzed atom transfer radical polymerization. Macromol. Rapid Commun. 2017, 38, 1700399.

    Article  CAS  Google Scholar 

  120. Hu, X.; Cui, G.; Zhu, N.; Zhai, J.; Guo, K. Photoinduced Cu(II)-mediated RDRP to P(VDF-co-CTFE)-g-PAN. Polymers 2018, 10, 68.

    Article  PubMed Central  CAS  Google Scholar 

  121. Hu, X.; Cui, G.; Zhang, Y.; Zhu, N.; Guo, K. Copper(II) photoinduced graft modification of P(VDF-co-CTFE). Eur. Polym. J. 2018, 100, 228–232.

    Article  CAS  Google Scholar 

  122. Tan, S.; Xiong, J.; Zhao, Y.; Liu, J.; Zhang, Z. Synthesis of poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-poly(methyl methacrylate) with low dielectric loss by photo-induced metal-free ATRP. J. Mater. Chem. C 2018, 6, 4131–4139.

    Article  CAS  Google Scholar 

  123. Yang, Q.; Ladmiral, V.; Ameduri B. PhotoRAFT polymerization of vinylidene fluoride using a household white LED as light source at room temperature. ChemPhotoChem 2019, 3, 1095–1099.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 92066204, 52003214, 51773166 and 51603167), China Postdoctoral Science Foundation Funded Project (Nos. 2019M663699 and 2020T130507), Key Laboratory Construction Program of Xi’an Municipal Bureau of Science and Technology (No. 201805056ZD7CG40), Natural Science Foundation of Jiangsu Province (No. BK2020245), Suzhou Science and Technology Project (No. SYG202028), and the Fundamental Research Funds for the Central Universities (No. xzy012020035). The authors thank for the kind help of Instrument Analysis Center of Xi’an Jiaotong University during measurement process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Cheng Zhang.

Additional information

Biography

Zhi-Cheng Zhang received his Ph.D. degree from Institute of Chemistry, Chinese Academy of Sciences in 2005. Subsequently, he began to do his postdoctoral research at Pennsylvania State University from 2005 to 2008. And he joined School of Science of Xi’an Jiaotong University in 2008. Currently, Zhang’s group focuses on the topic of controllable radical polymerization methodology, synthesis of novel functional fluoropolymers, electroactive PVDF based fluoropolymers, synthesis of novel and high energy storage capacitor dielectrics, sensor based on P(VDF-TrFE), and flexible composite dielectrics with high energy density and high breakdown strength.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, HH., Zhang, Y., Cheng, YP. et al. The Application of Controlled/Living Radical Polymerization in Modification of PVDF-based Fluoropolymer. Chin J Polym Sci 39, 1110–1126 (2021). https://doi.org/10.1007/s10118-021-2616-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-021-2616-x

Keywords

Navigation