Skip to main content
Log in

Determination of the embedded length of stabilizing piles in colluvial landslides with upper hard and lower weak bedrock based on the deformation control principle

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Several colluvial landslides have developed in the Jurassic strata region of Zigui County, a major landslide-prone region in the Three Gorges Reservoir Region of China. The bedrock in which stabilizing piles are placed in the landslide-prone Zigui region can be generally characterized as upper sandstone and lower silty mudstone. A site investigation of the Majiagou No. 1 landslide indicated that the pile heads were displaced horizontally by approximately 15.0 cm. This paper presents a novel model for determining the reasonable embedded length for stabilizing piles in colluvial landslides with upper hard and lower weak bedrock based on the deformation control principle. A negative power function relationship between the horizontal displacement of the pile head and the reasonable embedded ratio for stabilizing piles is proposed on the basis of the allowable pile deformation according to industrial standards. Furthermore, the lower limit on the horizontal displacement of the pile head is deduced to obtain the maximum reasonable embedded ratio of stabilizing piles. Reasonable embedded length ratio models of stabilizing piles are analyzed based on various influencing factors. The results show that (1) increasing the embedded length of the piles can significantly reduce both the horizontal displacement and the maximum absolute value of the shear force on the piles, (2) the increase in the maximum bending moment of the pile with increasing embedded pile length is insignificant, and (3) increasing the thickness of the upper hard rock and the coefficients of subgrade reaction of the upper hard and lower weak rock and reducing the driving force of the landslide help to reduce the reasonable embedded length of the piles. Consequently, it is suggested that stabilizing piles should be set in stronger and thicker upper hard rock in regions with low landslide driving force in order to minimize the reasonable embedded length of the piles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abbas JM, Chik ZH, Taha MR (2008) Single pile simulation and analysis subjected to lateral load. Electron J Geotech Eng 13(Bundle E):1–15

  • Ashour M, Ardalan H (2012) Analysis of pile stabilized slopes based on soil–pile interaction. Comput Geotech 39:85–97. doi:10.1016/j.compgeo.2011.09.001

  • Chen Y (1997) Assessment on pile effective lengths and their effects on design—I. Assessment. Comput Struct 62(2):265–286

  • Chen LT, Poulos HG (1993) Analysis of pile–soil interaction under lateral loading using infinite and finite element. Comput Geotech 15(4):189–220. doi:10.1016/0266-352X(93)90001-N

  • Conte E, Troncone A, Vena M (2013) Nonlinear three-dimensional analysis of reinforced concrete piles subjected to horizontal loading. Comput Geotech 49:123–133. doi:10.1016/j.compgeo.2012.10.013

    Article  Google Scholar 

  • Frank R, Pouget P (2008) Experimental pile subjected to long duration thrusts owing to a moving slope. Geotechnique 58(8):645–658. doi:10.1680/geot.2008.58.8.645

    Article  Google Scholar 

  • Goit C, Saitoh M, Oikawa H, Kawakami H (2014) Effects of soil nonlinearity on the active length of piles embedded in cohesionless soil: model studies. Acta Geotech 9(3):455–467. doi:10.1007/s11440-013-0257-0

    Article  Google Scholar 

  • Hello BL, Villard P (2009) Embankments reinforced by piles and geosynthetics—numerical and experimental studies dealing with the transfer of load on the soil embankment. Eng Geol 106(1–2):78–91. doi:10.1016/j.enggeo.2009.03.001

    Article  Google Scholar 

  • Ho IH (2009) Optimization of pile reinforced slopes using finite element analyses. Ph.D. dissertation. Iowa State University, Ames

  • Huang BL, Zheng WJ, Yu ZZ et al (2015) A successful case of emergency landslide response—the Sept. 2, 2014, Shanshucao landslide, Three Gorges Reservoir, China. Geoenviron Disasters 2(1):18. doi:10.1016/j.enggeo.2014.10.012

  • Jang YS, Kim YS (2013) Centrifugal model behavior of laterally loaded suction pile in sand. KSCE J Civ Eng 17(5):980–988. doi:10.1007/s12205-013-0011-z

    Article  Google Scholar 

  • Jeong S, Kim B, Won J, Lee J (2003) Uncoupled analysis of stabilizing piles in weathered slopes. Comput Geotech 30(8):671–682. doi:10.1016/j.compgeo.2003.07.002

    Article  Google Scholar 

  • Jian WX, Xu Q, Yang HF et al (2014) Mechanism and failure process of Qianjiangping landslide in the Three Gorges Reservoir, China. Environ Earth Sci 72(8):2999. doi:10.1007/s12665-014-3205-x

    Article  Google Scholar 

  • Jiao WX (2006) Work on hand-dug hole slide-resistant pile. Dissertation for M. Eng. China University of Geosciences, Beijing. (in Chinese)

  • Jongmans D (1996) Prediction of ground vibrations caused by pile driving: a new methodology. Eng Geol 42(1):25–36. doi:10.1016/0013-7952(95)00058-5

    Article  Google Scholar 

  • Kang GC, Song YS, Kim TH (2009) Behavior and stability of a large-scale cut slope considering reinforcement stages. Landslides 6(3):263–272. doi:10.1007/s10346-009-0164-5

    Article  Google Scholar 

  • Krolis VD, Van dZGL, de Vries W (2010) Determining the embedded pile length for large-diameter monopiles. Mar Technol Soc J 44(1):24–31. doi:10.4031/MTSJ.44.1.6

    Article  Google Scholar 

  • Kumar PS, Karuppaiah KB, Parameswaran P (2007) Buckling behavior of partially embedded reinforced concrete piles in sand. ARPN J Eng Appl Sci 2(4):22–26

    Google Scholar 

  • Lei GP, Tang HM, Wu W (2015) A pile–soil separation concerned model for laterally loaded piles in layered soils. In: Recent advances in modeling landslides and debris flows. Springer series in geomechanics and geoengineering. Springer, Heidelberg, pp 211–228. doi:10.1007/978-3-319-11053-0_18

  • Leung YF, Klar A, Soga K (2010) Theoretical study on pile length optimization of pile groups and piled rafts. J Geotech Geoenviron Eng 136(2):319–330. doi:10.1061/(ASCE)GT.1943-5606.0000206

    Article  Google Scholar 

  • Li CD, Tang HM, Hu XL, Wang LQ (2013) Numerical modelling study of the load sharing law of anti-sliding piles based on the soil arching effect for Erliban landslide, China. KSCE J Civ Eng 17(6):1251–1262. doi:10.1007/s12205-013-0074-x

    Article  Google Scholar 

  • Li CD, Tang HM, Ge YF, Hu XL, Wang LQ (2014) Application of back-propagation neural network on bank destruction forecasting for accumulative landslides in the Three Gorges Reservoir Region, China. Stoch Env Res Risk Assess 28(6):1465–1477. doi:10.1007/s00477-014-0848-9

    Article  Google Scholar 

  • Li CD, Wu JJ, Tang HM, Hu XL, Liu XW, Wang CQ, Liu T, Zhang YQ (2016) Model testing of the response of stabilizing piles in landslides with upper hard and lower weak bedrock. Eng Geol 204:65–76. doi:10.1016/j.enggeo.2016.02.002

    Article  Google Scholar 

  • Li CD, Wang XY, Tang HM, Lei GP, Yan JF, Zhang YQ (2017) A preliminary study on the location of the stabilizing piles for colluvial landslides with interbedding hard and soft bedrocks. Eng Geol 224:15–28. doi:10.1061/j.enggeo.2017.04.020

  • Lirer S (2012) Landslide stabilizing piles: experimental evidences and numerical interpretation. Eng Geol 149–150:70–77. doi:10.1016/j.enggeo.2012.08.002

    Article  Google Scholar 

  • Liu QS, Liu DF (2012) Study on embedded pile length in slope reinforced. Appl Mech Mater 105–107:1497–1504. doi:10.4028/www.scientific.net/AMM.105-107.1497

    Google Scholar 

  • Liu JG, Mason PJ, Clerici N et al (2004) Landslide hazard assessment in the Three Gorges area of the Yangtze River using ASTER imagery: Zigui-Badong. Geomorphology 61(1):171–187. doi:10.1016/j.geomorph.2003.12.004

  • Martin GR, Chen CY (2005) Response of piles due to lateral slope movement. Comput Struct 83(8–9):588–598. doi:10.1016/j.compstruc.2004.11.006

    Article  Google Scholar 

  • Miao HB, Yin KL, Lin B (2014) Development characteristics of the landslides in Jurassic red-strata in the Three Gorges Reservoir, China. In: Landslide science for a safer geoenvironment. Springer, Cham, pp 615–622. doi:10.1007/978-3-319-04996-0_95

  • Miao HB, Wang GH, Yin KL, Kamai T, Li YY (2014b) Mechanism of the slow-moving landslides in Jurassic red-strata in the Three Gorges Reservoir, China. Eng Geol 171:59–69. doi:10.1016/j.enggeo.2013.12.017

    Article  Google Scholar 

  • Mironov VV (1973) Analysis of piles of finite length subjected to horizontal loads. Soil Mech Found Eng 10(1):5–9. doi:10.1007/BF01706630

    Article  Google Scholar 

  • Nunez MA, Briançon L, Dias D (2013) Analyses of a pile-supported embankment over soft clay: full-scale experiment, analytical and numerical approaches. Eng Geol 153:53–67. doi:10.1016/j.enggeo.2012.11.006

    Article  Google Scholar 

  • Peng L, Niu RQ, Huang B, Wu XL, Zhao YN, Ye RQ (2014) Landslide susceptibility mapping based on rough set theory and support vector machines: a case of the Three Gorges area, China. Geomorphology 204:287–301. doi:10.1016/j.geomorph.2013.08.013

    Article  Google Scholar 

  • Qinghai Province No. 906 Engineering Investigation and Design Institute (2006) Report of construction documents design phase for Majiagou landslide control project in Zigui County, Three Gorges Reservoir Region, Hubei Province, China. Qinghai Province No. 906 Engineering Investigation and Design Institute, Qinghai. (in Chinese)

  • Salgado R, Tehrani FS, Prezzi M (2014) Analysis of laterally loaded pile groups in multilayered elastic soil. Comput Geotech 62:136–153. doi:10.1016/j.compgeo.2014.07.005

    Article  Google Scholar 

  • Second Surveying and Design Institute of the National Department of Chinese Railways (1983) Design and computation of anti-slide piles. Chinese Railway Publishing House, Beijing. (in Chinese)

  • Song YS, Hong W, Woo K (2012) Behaviour and analysis of stabilizing piles installed in a cut slope during heavy rainfall. Eng Geol 129–130:56–67. doi:10.1016/j.enggeo.2012.01.012

    Article  Google Scholar 

  • Standardization Administration of China (2006) TB 10025/J127: Code for design on retaining structures of railway subgrade. Standardization Administration of China, Beijing. (in Chinese)

  • Standard of People’s Republic of China (2000) Code on Geotechnical Investigations for Metro and Light Rail Transit (GB 50307-1999)

  • Tang HM, Hu XL, Xu C, Li CD, Yong R, Wang LQ (2014) A novel approach for determining landslide pushing force based on landslide–pile interactions. Eng Geol 182(Pt A):15–24. doi:10.1016/j.enggeo.2014.07.024

  • Tang HM, Zhang YQ, Li CD, Liu XW, Wu JJ, Chen F, Wang XY, Yan JF (2016) Development and application of in situ plate-loading test apparatus for landslide-stabilizing pile. Geotech Test J 39(5):757–768. doi:10.1520/GTJ20150289

  • Wang JJ (2010) Behaviour of an over-length pile in layered soils. Proc ICE Geotech Eng 163(5):257–266

    Article  Google Scholar 

  • Wang LP, Zhang G (2014) Centrifuge model test study on pile reinforcement behavior of cohesive soil slopes under earthquake conditions. Landslides 11:213–223. doi:10.1007/s10346-013-0388-2

    Article  Google Scholar 

  • Wei WB, Cheng YM (2009) Strength reduction analysis for slope reinforced with one row of pile. Comput Geotech 36(7):1176–1185. doi:10.1016/j.compgeo.2009.05.004

    Article  Google Scholar 

  • Won J, You K, Jeong S, Kim S (2005) Coupled effects in stability analysis of pile-slope systems. Comput Geotech 32(4):304–315. doi:10.1016/j.compgeo.2005.02.006

    Article  Google Scholar 

  • Wu SR, Shi L, Wang RJ, Tan CX, Hu DG, Mei YT, Xu RC (2001) Zonation of the landslide hazards in the forereservoir region of the Three Gorges Project on the Yangtze River. Eng Geol 59(1–2):51–58. doi:10.1016/S0013-7952(00)00061-2

  • Yang Y, Sun HY, Shang YQ (2013) Influence of anchorage depth on mechanical behaviour of double-row anti-slide piles. Chin J Rock Mech Eng 32(10):1999–2007 (in Chinese with English abstract)

  • Zhu HH, Shi B, Yan JF, Zhang J, Wang J (2015) Investigation of the evolutionary process of a reinforced model slope using a fiber-optic monitoring network. Eng Geol 186:34–43. doi:10.1016/j.enggeo.2014.10.012

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Fund of China (Nos. 41472261, 41202198, 41372310, and 41230637), the Fundamental Research Funds for the Central Universities, the China University of Geosciences (Wuhan) (No. CUG150621), and the Open Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Grant No. SKLGP2017K017). The authors would like to thank all of their colleagues and students who contributed to the field investigation and tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liangqing Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Yan, J., Wu, J. et al. Determination of the embedded length of stabilizing piles in colluvial landslides with upper hard and lower weak bedrock based on the deformation control principle. Bull Eng Geol Environ 78, 1189–1208 (2019). https://doi.org/10.1007/s10064-017-1123-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1123-3

Keywords

Navigation