Skip to main content
Log in

The quantification of total and effective porosities in travertines using PIA and saturation-buoyancy methods and the implication for strength and durability

  • Original Article
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

The porosity of travertine controls its strength characters and durability. In this study, seven travertine samples were collected from mines in Iran. The saturation-buoyancy (SB) method was used to determine density, water absorption by weight, effective porosity, and total porosity. Petrographic image analysis (PIA) was applied to measure total porosity. Uniaxial compressive strength (UCS) of travertine samples was obtained under both oven-dried and saturated conditions. The results showed that mean PIA total porosity of samples is 2–4 times more than total porosity obtained from the SB method. The underestimation of total porosity by SB method was attributed to pores type and pores size. According to regression analyses, the UCS shows a better correlation with SB effective porosity than SB total porosity. Based on results, water absorption by weight has a large impact on UCS of travertines. The SB effective porosity shows high correlation with water absorption by weight. There is a good power relation between PIA total porosity and UCS of travertines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Akin M (2010) A quantitative weathering classification system for yellow travertines. Environ Earth Sci 61:47–61. doi:10.1007/s12665-009-0319-7

    Article  Google Scholar 

  • Akin M, Özsan A (2011) Evaluation of the long-term durability of yellow travertine using accelerated weathering tests. Bull Eng Geol Environ 70:101–114. doi:10.1007/s10064-010-0287-x

    Article  Google Scholar 

  • Al-Harthi AA, Al-Amri RM, Shehata WM (1999) The porosity and engineering properties of vesicular basalt in Saudi Arabia. Eng Geol 54:313–320. doi:10.1016/S0013-7952(99)00050-2

    Article  Google Scholar 

  • Andriani GF, Walsh N (2002) Physical properties and textural parameters of calcarenitic rocks: Qualitative and quantitative evaluations. Eng Geol 67:5–15. doi:10.1016/S0013-7952(02)00106-0

    Article  Google Scholar 

  • Angeli M, Benavente D, Bigas JP, Menéndez B, Hébert R, David C (2008) Modification of the porous network by salt crystallization in experimentally weathered sedimentary stones. Mater Struct 41:1091–1108. doi:10.1617/s11527-007-9308-z

    Article  Google Scholar 

  • Anovitz LM, Cole DR (2015) Characterization and analysis of porosity and pore structures. Rev Mineral Geochem 80:61–164. doi:10.2138/rmg.2015.80.04

    Article  Google Scholar 

  • Anselmetti FS, Luthi S, Eberli GP (1998) Quantitative characterization of carbonate pore systems by digital image analysis. Am Assoc Pet Geol Bull 82:1815–1836. doi:10.1306/05270909001

    Article  Google Scholar 

  • Bell FG (1993) Durability of carbonate rock as building stone with comments on its preservation. Environ Earth Sci 21:87–200

    Google Scholar 

  • Benavente D, Garcia del Cura MA, Fort R, Ordóñez S (2004) Durability estimation of porous building stones from pore structure and strength. Eng Geol 74:113–127

    Article  Google Scholar 

  • Benavente D, Cueto N, Martínez-Martínez J, García del Cura MA, Cañaveras JC (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ Geol 52:215–224

    Article  Google Scholar 

  • Berrezueta E, González-Menéndez L, Ordóñez-Casado B, Olaya P (2015) Pore network quantification of sandstones under experimental CO2 injection using image analysis. Comput Geosci 77:97–110

    Article  Google Scholar 

  • Bubeck A, Walker RJ, Healy D, Dobbs M, Holwell DA (2017) Pore geometry as a control on rock strength. Earth Planet Sci Lett 457:38–48

    Article  Google Scholar 

  • Cantrell DL, Hagerty RM (1999) Microporosity in arab formation carbonates, Saudi Arabia. GeoArabia 4:129–154

    Google Scholar 

  • Cerepi A, Humbert L, Burlot R (2001) Petrophysical properties of porous medium from petrographic image analysis data. Colloids Surf A Physicochem Eng Asp 187:233–256. doi:10.1016/S0927-7757(01)00636-7

    Article  Google Scholar 

  • Chentout M, Alloul B, Rezouk A, Belhai D (2015) Experimental study to evaluate the effect of travertine structure on the physical and mechanical properties of the material. Arab J Geosci 8:8975–8985. doi:10.1007/s12517-015-1910-8

    Article  Google Scholar 

  • Choquette PW, Pray LC (1970) Geologic nomenclature and classification of porosity in sedimentary carbonates. Am Assoc Pet Geol B 54:207–250

    Google Scholar 

  • Cnudde V, Cwirzen A, Masschaele B, Jacobs PJS (2009) Porosity and microstructure characterization of building stones and concretes. Eng Geol 103:76–83. doi:10.1016/j.enggeo.2008.06.014

    Article  Google Scholar 

  • Çobanoğlu İ (2015) Prediction and identification of capillary water absorption capacity of travertine dimension stone. Arab J Geosci 8:10135–10149. doi:10.1007/s12517-015-1902-8

    Article  Google Scholar 

  • Çobanoğlu İ, Çelik SB (2012) Determination of strength parameters and quality assessment of Denizli travertines (SW Turkey). Eng Geol 129:38–47. doi:10.1016/j.enggeo.2012.01.010

    Article  Google Scholar 

  • Coles ME, Hazlett RD, Muegge EL, Jones KW, Andrews B, Dowd B, Siddons P, Peskin A, Spanne P, Soll WE (1998) Developments in synchrotron X-ray microtomography with applications to flow in porous media. SPE Reserv Eval Eng 1:288–296. doi:10.2118/36531-MS

    Article  Google Scholar 

  • Demirdag S (2009) The effect of using different polymer and cement based materials in pore filling applications on technical parameters of travertine stone. Constr Build Mater 23:522–530. doi:10.1016/j.conbuildmat.2007.10.019

    Article  Google Scholar 

  • Erdoğan O, Özvan A (2015) Evaluation of strength parameters and quality assessment of different lithotype levels of Edremit (van) travertine (eastern Turkey). Afr Earth Sci 106:108–117. doi:10.1016/j.jafrearsci.2015.03.018

    Article  Google Scholar 

  • Fusi N, Martinez-Martinez J (2013) Mercury porosimetry as a tool for improving quality of micro-CT images in low porosity carbonate rocks. Eng Geol 166:272–282. doi:10.1016/j.enggeo.2013.10.002

    Article  Google Scholar 

  • Galaup S, Liu Y, Cerepi A (2012) New integrated 2D–3D physical method to evaluate the porosity and microstructure of carbonate and dolomite porous system. Microporous Mesoporous Mater 154:175–186. doi:10.1016/j.micromeso.2011.12.021

    Article  Google Scholar 

  • García-del-Cura MÁ, Benavente D, Martínez-Martínez J, Cueto N (2012) Sedimentary structures and physical properties of travertine and carbonate tufa building stone. Constr Build Mater 28:456–467. doi:10.1016/j.conbuildmat.2011.08.042

    Article  Google Scholar 

  • Gardner KL (1980) Impregnation technique using colored epoxy to define porosity in petrographic thin sections. Can J Earth Sci 17:1104–1107. doi:10.1139/e80-110

    Article  Google Scholar 

  • Ghiasi-Freez J, Soleimanpour I, Kadkhodaie-Ilkhchi A, Ziaii M, Sedighi M, Hatampour A (2012) Semi-automated porosity identification from thin section images using image analysis and intelligent discriminant classifiers. Comput Geosci 45:36–45. doi:10.1016/j.cageo.2012.03.006

    Article  Google Scholar 

  • Gies R (1987) An improved method for viewing micropore systems in rocks with the polarizing microscope. SPE Form Eval 2:209–214. doi:10.2118/13136-PA

    Article  Google Scholar 

  • Giesche H (2006) Mercury porosimetry: A general (practical) overview. Part Part Syst Charact 23:9–19. doi:10.1002/ppsc.200601009

    Article  Google Scholar 

  • Goudie AS (1999) A comparison of the relative resistance of limestones to frost and salt weathering. Permafr Periglac Process 10:309–316. doi:10.1002/(SICI)1099-1530(199910/12)10:4<309::AID-PPP330>3.0.CO;2-C

    Article  Google Scholar 

  • Griffiths L, Heap MJ, Xu T, Chen CF, Baud P (2017) The influence of pore geometry and orientation on the strength and stiffness of porous rock. J Struct Geol 96:149–160

    Article  Google Scholar 

  • Grove C, Jerram DA (2011) jPOR: An ImageJ macro to quantify total optical porosity from blue-stained thin sections. Comput Geosci 37:1850–1859. doi:10.1016/j.cageo.2011.03.002

    Article  Google Scholar 

  • Haines TJ, Neilson JE, Healy D, Michie EA, Aplin AC (2015) The impact of carbonate texture on the quantification of total porosity by image analysis. Comput Geosci 85:112–125. doi:10.1016/j.cageo.2015.08.016

    Article  Google Scholar 

  • Higgins MD (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University, New York

    Book  Google Scholar 

  • ISRM (2007) Rock characterization, testing and monitoring. In: Brown ET (ed) International society of rock mechanics suggested methods. Pergamon Press, Oxford, pp 1–211

    Google Scholar 

  • Jamshidi A, Nikudel MR, Khamehchiyan M (2016) Evaluation of the durability of gerdoee travertine after freeze–thaw cycles in fresh water and sodium sulfate solution by decay function models. Eng Geol 202:36–43. doi:10.1016/j.enggeo.2016.01.004

    Article  Google Scholar 

  • Larrea ML, Castro SM, Bjerg EA (2014) A software solution for point counting. Petrographic thin section analysis as a case study. Arab J Geosci 7:2981–2989. doi:10.1007/s12517-013-1032-0

    Article  Google Scholar 

  • Maurício A, Figueiredo C, Alves C, Pereira M (2013) Non-destructive microtomography-based imaging and measuring laboratory-induced degradation of travertine, a random heterogeneous geomaterial used in urban heritage. Environ Earth Sci 69:1471–1480. doi:10.1007/s12665-013-2311-5

    Article  Google Scholar 

  • McKenzie B, Kay G, Matthews KH, Knott RM, Cairns D (2015) The hen’s egg chorioallantoic membrane (HET-CAM) test to predict the ophthalmic irritation potential of a cysteamine-containing gel: Quantification using Photoshop® and ImageJ. Int J Pharm 490:1–8. doi:10.1016/j.ijpharm.2015.05.023

    Article  Google Scholar 

  • Mowers TT, Budd DA (1996) Quantification of porosity and permeability reduction due to calcite cementation using computer-assisted petrographic image analysis techniques. Am Assoc Pet Geol Bull 80:309–322

    Google Scholar 

  • Nabawy BS (2014) Estimating porosity and permeability using digital image analysis (DIA) technique for highly porous sandstones. Arab J Geosci 7:889–898. doi:10.1007/s12517-012-0823-z

    Article  Google Scholar 

  • Nejad HS, Hosseini N, Hassani AN (2016) Determination of the optimum size of building stone blocks: Case study of delichai travertine mine. World Acad Sci Eng Technol, Int J Environ Chem Ecol Geol Geophys Eng 10:389–394

    Google Scholar 

  • Newsham KE, Rushing JA (2001) An integrated work-flow to characterize unconventional gas resources: Part 1 – geological assessment and petrophysical evaluation. Soc Petrol Eng SPE 71351

  • Nouraliee J, Porkhial S, Mohammadzadeh-Moghaddam M, Mirzaei S, Ebrahimi D, Rahmani MR (2015) Investigation of density contrasts and geologic structures of hot springs in the Markazi Province of Iran using the gravity method. Russ Geol Geophys 56:1791–1800

    Article  Google Scholar 

  • Pedley HM (1990) Classification and environmental models of cool freshwater tufas. Sediment Geol 68:143–154

    Article  Google Scholar 

  • Pentecost A (2005) Travertine. Springer, Berlin

    Google Scholar 

  • Přikryl R (2006) Assessment of rock geomechanical quality by quantitative rock fabric coefficients: Limitations and possible source of misinterpretations. Eng Geol 87:149–162. doi:10.1016/j.enggeo.2006.05.011

    Article  Google Scholar 

  • Rahmani JS, Tutti F, Omidian S, Ranjbaran M (2012) Mineralogy and the genesis of fissure-ridge and vein type travertine (in ab-E ask) based on BASED ON petrographic studies and carbon and oxygen isotopes analysis. Iran J Geol 6:51–61

    Google Scholar 

  • Rouquerol J, Avnir D, Fairbridge CW, Everett DH, Haynes JM, Pernicone N, Ramsay JDF, Sing KSW, Unger KK (1994) Recommendations for the characterization of porous solids (technical report). Pure Appl Chem 66:1739–1758

    Article  Google Scholar 

  • Sabatakakis N, Koukis G, Tsiambaos G, Papanakli S (2008) Index properties and strength variation controlled by microstructure for sedimentary rocks. Eng Geol 97:80–90. doi:10.1016/j.enggeo.2007.12.004

    Article  Google Scholar 

  • Salehi L, Mohamadi SM (2013) Geochemical studies of stable isotopes (carbon and oxygen) in Mahallat travertine deposits (south east arak). Iran J Geol 27:31–40

    Google Scholar 

  • Sengun N, Demirdag S, Ugur I, Akbay D, Altindag R (2015) Assessment of the physical and mechanical variations of some travertines depend on the bedding plane orientation under physical weathering conditions. Constr Build Mater 98:641–648. doi:10.1016/j.conbuildmat.2015.08.142

    Article  Google Scholar 

  • Siegesmund S, Snethlage R (2011) Stone in architecture: Properties and durability. Springer, Berlin

    Book  Google Scholar 

  • Sims I (1991) Quality and durability of stone for construction. Q J Eng Geol 24:67–73

    Article  Google Scholar 

  • Smith MR (1999) Stone: building stone, rock fill and armourstone in construction. Geological Society of London

  • Soete J, Kleipool LM, Claes H, Claes S, Hamaekers H, Kele S, Özkul M, Foubert A, Reijmer JJG, Swennen R (2015) Acoustic properties in travertines and their relation to porosity and pore types. Mar Pet Geol 59:320–335. doi:10.1016/j.marpetgeo.2014.09.004

    Article  Google Scholar 

  • Thiele O, Alavi A, Assefi R, Hushmand-zadeh A, Seyed-Emami K, Zahedi M (1968) Explanatory text of the Golpaygan Quadrangle map, 1: 250,000. Geological Survey of Iran Publications

  • Török Á, Vásárhelyi B (2010) The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary. Eng Geol 115:237–245. doi:10.1016/j.enggeo.2010.01.005

    Article  Google Scholar 

  • Tugrul A (2004) The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey. Eng Geol 75:215–227. doi:10.1016/j.enggeo.2004.05.008

    Article  Google Scholar 

  • Tuncay E, Hasancebi N (2009) The effect of length to diameter ratio of test specimens on the uniaxial compressive strength of rock. Bull Eng Geol Environ 68:491–497

    Article  Google Scholar 

  • Turi B (1986) Stable isotope geochemistry of travertine. Handbook of environmental isotopic geochemistry. Elsevier Science Publishers, Amsterdam, pp 207–208

    Google Scholar 

  • Turk N, Dearman WR (1986) A correction equation on the influence of length-to diameter ratio on the uniaxial compressive strength of rocks. Eng Geol 22:293–300

    Article  Google Scholar 

  • Van der Merwe JN (2003) A laboratory investigation into the effect of specimen size on the strength of coal samples from different areas. J South Afr Inst Min Metall 103:273–280

    Google Scholar 

  • Whitham AG, Sparks RSJ (1986) Pumice. Bull Volcanol 48:209–223. doi:10.1007/BF01087675

    Article  Google Scholar 

  • Yagiz S (2012) Comments on “Determination of strength parameters and quality assessment of Denizli travertines (SW Turkey)” Ibrahim Cobanoglu and Sefer Beran Celik, 129–130 (2012) 38–47. Eng Geol 147:149–150. doi:10.1016/j.enggeo.2012.07.012

    Article  Google Scholar 

  • Zalooli A, Khamehchiyan M, Nikudel MR, Jamshidi A (2017) Deterioration of travertine samples due to magnesium sulfate crystallization pressure: Examples from Iran. Geotech Geol Eng 35:463–473. doi:10.1007/s10706-016-0120-9

    Article  Google Scholar 

  • Zhang X, Liu B, Wang J, Zhang Z, Shi K, Wu S (2014) Adobe photoshop quantification (PSQ) rather than point-counting: A rapid and precise method for quantifying rock textural data and porosities. Comput Geosci 69:62–71. doi:10.1016/j.cageo.2014.04.003

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the mining companies in Mahallat and Firouzkouh cities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mashala Khamehchiyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zalooli, A., Khamehchiyan, M. & Nikudel, M.R. The quantification of total and effective porosities in travertines using PIA and saturation-buoyancy methods and the implication for strength and durability. Bull Eng Geol Environ 77, 1739–1751 (2018). https://doi.org/10.1007/s10064-017-1072-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1072-x

Keywords

Navigation