Skip to main content
Log in

Assessing flow paths in a karst aquifer based on multiple dye tracing tests using stochastic simulation and the MODFLOW-CFP code

Evaluation des voies d’écoulement dans un aquifère karstique à partir d’essais de traçage artificiels multiples en utilisant une simulation stochastique et le code MODFLOW-CFP

Evaluación de trayectorias de flujo en un acuífero kárstico basado en múltiples pruebas de trazadores con colorantes usando simulación estocástica y el código MODFLOW-CFP

采用随机模拟和MODFLOW-CFP编码在多种染色示踪实验的基础上评价岩溶含水层的水流通道

Avaliando os padrões de fluxo em um aquífero cárstico com base em testes de traçadores com corantes múltiplos usando simulação estocástica e o código MODFLOW-CFP

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Karst systems show high spatial variability of hydraulic parameters over small distances and this makes their modeling a difficult task with several uncertainties. Interconnections of fractures have a major role on the transport of groundwater, but many of the stochastic methods in use do not have the capability to reproduce these complex structures. A methodology is presented for the quantification of tortuosity using the single normal equation simulation (SNESIM) algorithm and a groundwater flow model. A training image was produced based on the statistical parameters of fractures and then used in the simulation process. The SNESIM algorithm was used to generate 75 realizations of the four classes of fractures in a karst aquifer in Iran. The results from six dye tracing tests were used to assign hydraulic conductivity values to each class of fractures. In the next step, the MODFLOW-CFP and MODPATH codes were consecutively implemented to compute the groundwater flow paths. The 9,000 flow paths obtained from the MODPATH code were further analyzed to calculate the tortuosity factor. Finally, the hydraulic conductivity values calculated from the dye tracing experiments were refined using the actual flow paths of groundwater. The key outcomes of this research are: (1) a methodology for the quantification of tortuosity; (2) hydraulic conductivities, that are incorrectly estimated (biased low) with empirical equations that assume Darcian (laminar) flow with parallel rather than tortuous streamlines; and (3) an understanding of the scale-dependence and non-normal distributions of tortuosity.

Résumé

Les systèmes karstiques montrent de grande variabilité spatiale des paramètres hydrauliques sur de petites distances et cela rend difficile leur modélisation avec plusieurs incertitudes. Les interconnexions des fractures jouent un rôle essentiel dans le transport des eaux souterraines, cependant de nombreuses méthodes stochastiques utilisées ne sont pas capables de reproduire ces structures complexes. Une méthodologie est. présentée pour la quantification de la tortuosité en utilisant l’algorithme de simulation à partir d’une équation unique simple (SNESIM) et un modèle d’écoulement hydrogéologique. Une image d’entrainement a été produite à partir des paramètres statistiques des fractures et ensuite utilisée dans le processus de simulation. L’algorithme SNESIM a été utilisé pour générer 75 réalisation de quatre classes de fractures dans un aquifère karstique en Iran. Les résultats de six essais de traçage artificiels ont été utilisés pour attribuer des valeurs de conductivité hydraulique à chaque cAll lasse de fractures. L’étape suivante a constitué à mettre en œuvre de manière consécutive les codes MODFLOW-CP et MODPATH afin de calculer les voies d’écoulement des eaux souterraines. Les 9000 voies d’écoulement obtenus à l’aide du code MODPATH ont été analysées pour calculer le facteur de tortuosité. Finalement, les valeurs de conductivité hydraulique calculées à partir des essais de traçage artificiels ont été affinées en utilisant les voies d’écoulement actuelles des eaux souterraines. Les principaux résultats de cette recherche sont: (1) une méthodologie pour la quantification de la tortuosité; (2) les conductivités hydrauliques, qui sont estimées de manière incorrecte (avec un biais faible) avec les équations empiriques qui considèrent un écoulement de type Darcy (laminaire) avec des lignes d’écoulement parallèles plutôt que sinueuses et (3) une compréhension de la dépendance de l’échelle et les distribution non normales de la tortuosité.

Resumen

Los sistemas kársticos muestran una alta variabilidad espacial de los parámetros hidráulicos en pequeñas distancias y esto hace que su modelado sea una tarea difícil con varias incertidumbres. Las interconexiones de fracturas tienen un papel importante en el transporte de agua subterránea, pero muchos de los métodos estocásticos en uso no tienen la capacidad de reproducir estas estructuras complejas. Se presenta una metodología para la cuantificación de la tortuosidad utilizando el algoritmo de simulación de la ecuación normal simple (SNESIM) y un modelo de flujo de agua subterránea. Se produjo una imagen de entrenamiento basada en los parámetros estadísticos de las fracturas y luego se usó en el proceso de simulación. El algoritmo SNESIM se utilizó para generar 75 realizaciones de las cuatro clases de fracturas en un acuífero kárstico en Irán. Los resultados de seis pruebas de trazadores con colorantes se utilizaron para asignar valores de conductividad hidráulica a cada clase de fracturas. En el siguiente paso, los códigos MODFLOW-CFP y MODPATH se implementaron consecutivamente para calcular las trayectorias del flujo de agua subterránea. Las 9000 trayectorias de flujo obtenidas del código MODPATH se analizaron adicionalmente para calcular el factor de tortuosidad. Finalmente, los valores de conductividad hidráulica calculados a partir de los experimentos de trazadores con colorantes se refinaron usando las trayectorias reales del flujo de agua subterránea. Los principales resultados de esta investigación son: (1) una metodología para la cuantificación de la tortuosidad; (2) conductividades hidráulicas, que son estimadas incorrectamente (sesgadas a baja) con ecuaciones empíricas que asumen el flujo Darciano (laminar) con líneas de corriente paralelas más que tortuosas; y (3) una comprensión de la dependencia de la escala y distribuciones no normales de la tortuosidad.

摘要

岩溶系统在很短的距离内水力参数就有很高的空间变异性,这使得其模拟成为一项很艰难的任务,并伴有一系列不确定性。断裂的相互连通对地下水的传输发挥着主要作用,但是现在使用的许多随机方法不能再现这些复杂的结构。这里介绍的方法就是采用单一的正规方程模拟(SNESIM)算法和地下水流模型对弯曲性进行量化。根据断裂的统计参数整做出了训练图像,然后用于模拟过程。用SNESIM算法产生了伊朗岩溶含水层四个类别的75个实现。利用六个染色示踪试验的结果把水力传导率值分配到每类断裂中。在下一步骤中,连续应用MODFLOW-CFP和MODPATH编码计算地下水流通道。对从MODPATH编码获取的9,000个水流通道进行进一步分析,计算弯曲度因子。最后,采用地下水实际水流通道对从染色示踪试验中计算的水力传导率值进行了修正。本研究的关键成果是:1)弯曲度量化的方法;2)用经验公式不能正确地估算的水力传导率(有偏见的低),这个经验公式假定达西(层流)流是平行的流线,而不是弯曲的流线;3)尺度依存性和弯曲度非正规分布的了解。

Resumo

Sistemas cársticos apresentam alta variabilidade espacial de parâmetros hidráulicos em pequenas distâncias e isso torna a sua modelagem uma difícil tarefa com diversas incertezas. Interconexões de fraturas tem um papel importante no transporte de águas subterrâneas, mas muitos dos métodos estocásticos em uso não possuem a capacidade de reproduzir essas estruturas complexas. Uma metodologia é apresentada para a quantificação da tortuosidade usando o algoritmo de simulação da equação normal única (ASENU) e um modelo de fluxo subterrâneo. Uma imagem de treinamento foi produzida com base em parâmetros estatísticos das fraturas e depois utilizada no processo de simulação. O algoritmo ASENU foi utilizado para gerar 75 realizações de quatro classes de fraturas em um aquífero cárstico no Irã. Os resultados de seis testes de traçadores com corante foram utilizados para atribuir valores de condutividade hidráulica a cada classe de fratura. Na etapa seguinte, os códigos MODFLOW-CFP e MODPATH foram consecutivamente implementados para computar os padrões de fluxo das águas subterrâneas. Os 9000 padrões de fluxo obtidos a partir do código MODPATH foram novamente analisadas para calcular o fator de tortuosidade. Finalmente, os valores de condutividade hidráulica calculados através dos experimentos de traçadores com corantes foram refinados usando os padrões reais de fluxo das águas subterrâneas. Os principais resultados dessa pesquisa são: (1) uma metodologia para quantificação da tortuosidade; (2) condutividades hidráulicas, que são estimadas incorretamente (pouco tendencioso) com equações empíricas que assumem o fluxo Darciano (laminar) com linhas de fluxo paralelas e não tortuosas; e (3) um entendimento da escala-dependência e das distribuições não normais de tortuosidade.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abusaada M, Sauter M (2013) Studying the flow dynamics of a karst aquifer system with an equivalent porous medium model. Groundwater 51:641–650

    Google Scholar 

  • Assari A, Mohammadi Z, Ghanbari RN (2016) Local variation of hydrogeological characteristics in the Asmari karstic limestone at the Karun IV dam, Zagros region, Iran. Q J Eng Geol Hydrogeol 49:105–115

    Article  Google Scholar 

  • Aydin H, Ekmekçi M, Soylu ME (2014) Effects of sinuosity factor on hydrodynamic parameters estimation in karst systems: a dye tracer experiment from the Beyyayla sinkhole (Eskişehir, Turkey). Environ Earth Sci 71:3921–3933

    Article  Google Scholar 

  • Bakalowicz M (2006) Importance of regional study site conditions in elaborating concepts and approaches in karst science. In: Harmon RS, Wicks CM, Ford DC, White WB (eds) Perspectives on karst geomorphology, hydrology, and geochemistry. GSA, Special Paper 404, pp 15–22

  • Bastante F, Ordóñez C, Taboada J, Matías J (2008) Comparison of indicator kriging, conditional indicator simulation and multiple-point statistics used to model slate deposits. Eng Geol 98:50–59

    Article  Google Scholar 

  • Bear J (1979) Hydraulics of groundwater. McGraw-Hill, London

    Google Scholar 

  • Capilla J, Gómez-Hernández JJ, Sahuquillo A (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data 2: demonstration on a synthetic aquifer. J Hydrol 203:175–188

    Article  Google Scholar 

  • Carvalho PPRM, Rasera LG, Costa JFCL, Varella LES (2015) MPS facies modelling of a submarine fan reservoir in southeast Brazil with SNESIM. Petroleum Geostatistics 2015, Biarritz, France, September 2015

  • Coli N, Pranzini G, Alfi A, Boerio V (2008) Evaluation of rock-mass permeability tensor and prediction of tunnel inflows by means of geo-structural surveys and finite element seepage analysis. Eng Geol 101:174–184

    Article  Google Scholar 

  • Cronkite-Ratcliff C, Phelps G, Boucher A (2011) A multiple-point geostatistical approach to quantifying uncertainty for flow and transport simulation in geologically complex environments. AGU Fall Meeting Abstracts 2011, Abstract no. H51M-09, 9 pp

  • Dreybrodt W (1996) Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models. Water Resour Res 32:2923–2935

    Article  Google Scholar 

  • Feyen L, Caers J (2005) Multiple-point geostatistics: a powerful tool to improve groundwater flow and transport predictions in multi-modal formations. In: Renard P, Demougeot-Renard H, Froidevaux R (eds) Proceedings of the Fifth European Conference on Geostatistics for Environmental Applications, Springer, Heidelberg, Germany, pp 197–208

  • Field MS (2002) The QTRACER2 program for tracer-breakthrough curve analysis for tracer tests in karstic aquifers and other hydrologic systems. US Environmental Protection Agency, Washington DC

    Google Scholar 

  • Field MS (2004) Forecasting versus predicting solute transport in solution conduits for estimating drinking-water risks. Slovenska akademija znanosti in umetnosti, Ljubljana, Slovenia

    Google Scholar 

  • Field MS, Nash SG (1997) Risk assessment methodology for karst aquifers: (1) estimating karst conduit-flow parameters. Environ Monit Assess 47:1–21

    Article  Google Scholar 

  • Galvão P, Halihan T, Hirata R (2016) The karst permeability scale effect of Sete Lagoas, MG, Brazil J Hydrol 532:149–162

    Article  Google Scholar 

  • Gomez-Hernandez J, Franssen HH, Cassiraga E (2001) Stochastic analysis of flow response in a three-dimensional fractured rock mass block. Int J Rock Mech Min Sci 38:31–44

    Article  Google Scholar 

  • Guardiano F, Srivastava RM (1993) Multivariate geostatistics: beyond bivariate moments. In: Gradstein FM (ed) Geostatistics-Troia 92, Springer, Heidelberg, Germany, pp. 133–144

  • Harbaugh AW (2005) MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process. US Geological Survey, Reston, VA

    Google Scholar 

  • Hartley L, Roberts D (2013) Summary of discrete fracture network modelling as applied to hydrogeology of the Forsmark and Laxemar sites. Swedish Nuclear Fuel and Waste Management Co, Stockholm

    Google Scholar 

  • Hartmann A, Goldscheider N, Wagener T, Lange J, Weiler M (2014) Karst water resources in a changing world: review of hydrological modeling approaches. Rev Geophys 52:218–242

    Article  Google Scholar 

  • He X, Sonnenborg TO, Jørgensen F, Høyer A-S, Møller RR, Jensen KH (2013) Analyzing the effects of geological and parameter uncertainty on prediction of groundwater head and travel time. Hydrol Earth Syst Sci 17:3245–3260

    Article  Google Scholar 

  • Hiller T, Kaufmann G, Romanov D (2011) Karstification beneath dam-sites: from conceptual models to realistic scenarios. J Hydrol 398:202–211

    Article  Google Scholar 

  • Hu BX, Xiaowei J, Li W (2007) Integration of tracer test data to refine geostatistical hydraulic conductivity fields using sequential self-calibration method. J China Univ Geosci 18:242–256

    Article  Google Scholar 

  • Huysmans M, Dassargues A (2009) Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium). Hydrogeol J 17:1901–1911

    Article  Google Scholar 

  • Huysmans M, Orban P, Cochet E, Possemiers M, Ronchi B, Lauriks K, Batelaan O, Dassargues A (2014) Using multiple-point Geostatistics for tracer test modeling in a clay-drape environment with spatially variable conductivity and sorption coefficient. Math Geosci 46:519–537

    Article  Google Scholar 

  • Iran Water and Power Resources Development Co (2012) Report of dye tracing experiments: Karun IV Dam site, Iran. IWPCO, Tehran

  • Klise K, McKenna S, Tidwell V, Lane J, Weissmann G, Wawrzyniec T, Nichols E (2008) Exploring solute transport and streamline connectivity using two-point and multipoint simulation methods. AGU Fall Meeting Abstracts, San Francisco, December 2008, Abstract no. H31B-086

  • Ko N-Y, Ji S-H, Koh Y-K, Choi J-W (2015) Evaluation of two conceptual approaches for groundwater flow simulation for a rock domain at the block-scale for the Olkiluoto site, Finland. Eng Geol 193(July 2015):297–304

  • Kresic N (2007) Hydraulic methods. In: Goldscheider N, Drew D (eds) Methods in karst hydrogeology. International Contributions to Hydrogeology 26, IAH, Wallingford, UK, pp. 65-91

  • Kumar GS (2014) Mathematical modeling of groundwater flow and solute transport in saturated fractured rock using a dual-porosity approach. J Hydrol Eng 19 (12), 04014033. doi:10.1061/(ASCE)HE.1943-5584.0000986

  • Kuniansky EL, Halford KJ, Shoemaker WB (2008) Permeameter data verify new turbulence process for MODFLOW. Ground Water 46:768–771

    Article  Google Scholar 

  • Lee S-Y, Carle SF, Fogg GE (2007) Geologic heterogeneity and a comparison of two geostatistical models: sequential Gaussian and transition probability-based geostatistical simulation. Adv Water Resour 30:1914–1932

    Article  Google Scholar 

  • Llopis-Albert C, Capilla JE (2009) Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 2, demonstration on a synthetic aquifer. J Hydrol 371:53–65

    Article  Google Scholar 

  • Mahab Ghods Consulting Engineers (2009) Final report of engineering geology. Mahab Ghods, Tehran, Iran

  • Mishra PK, Kuhlman KL (2013) Advances in hydrogeology. Springer, New York

    Book  Google Scholar 

  • Mohammadi Z, Raeisi E, Zare M (2007) A dye-tracing test as an aid to studying karst development at an artesian limestone sub-aquifer: Zagros zone, Iran. Environ Geol 52:587–594

    Article  Google Scholar 

  • Morales T, Uriarte JA, Olazar M, Antigüedad I, Angulo B (2010) Solute transport modelling in karst conduits with slow zones during different hydrologic conditions. J Hydrol 390:182–189

    Article  Google Scholar 

  • Neuman SP (2005) Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol J 13:124–147

    Article  Google Scholar 

  • Noushabadi MJ, Jourde H, Massonnat G (2011) Influence of the observation scale on permeability estimation at local and regional scales through well tests in a fractured and karstic aquifer (Lez aquifer, southern France). J Hydrol 403:321–336

    Article  Google Scholar 

  • Nowak W, Cirpka OA (2006) Geostatistical inference of hydraulic conductivity and dispersivities from hydraulic heads and tracer data. Water Resour Res 42(8). doi:10.1029/2005WR004832

  • Pérez-García AJ, García-Cabrejo O, Obregón-Neira N (2014) Implications of heterogeneity on transport simulations at large scale: the Morroa aquifer case. Rev Facultad Ing Univ Antioquia 73:29–42

  • Pickel A, Frechette J, Comunian A, Weissmann G (2015) Building a training image with digital outcrop models. J Hydrol 531:53–61

    Article  Google Scholar 

  • Pollock DW (2012) User guide for MODPATH version 6: a particle tracking model for MODFLOW. US Geological Survey, Reston, VA

    Google Scholar 

  • Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS: a user’s guide. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Roth C, Chiles J-P, de Fouquet C (1998) Combining geostatistics and flow simulators to identify transmissivity. Adv Water Resour 21:555–565

    Article  Google Scholar 

  • Rovey CW, Cherkauer DS (1995) Scale dependency of hydraulic conductivity measurements. Groundwater 33:769–780

    Article  Google Scholar 

  • Rovey C II (1994) Assessing flow systems in carbonate aquifers using scale effects in hydraulic conductivity. Environ Geol 24:244–253

    Article  Google Scholar 

  • Rovey CW II (1998) Digital simulation of the scale effect in hydraulic conductivity. Hydrogeol J 6:216–225

    Article  Google Scholar 

  • Roy A, Mukerji T, Caers J (2014) Identifying training images from fracture outcrops for MPS-based modeling. AGU Fall Meeting Abstracts, 2014, Abstract H33C-0826

  • Sauter M (1991) Assessment of hydraulic conductivity in a karst aquifer at local and regional scale. Proceedings of Third Conference on Hydrogeology, Ecology, Monitoring and Management of Ground Water in Karst Terranes, Nashville, TN, December 2011

  • Şen Z (1996) Theoretical RQD-porosity-conductivity-aperture charts. Int J Rock Mech Min Sci Geomech Abs, Pergamon 33(2):173–177

  • Shoemaker WB, Kuniansky EL, Birk S, Bauer S, Swain ED (2008) Documentation of a conduit flow process (CFP) for MODFLOW-2005. US Geological Survey, Reston, VA

    Google Scholar 

  • Singhal BBS, Gupta RP (2010) Applied hydrogeology of fractured rocks. Springer, Dordrecht, The Netherlands

    Book  Google Scholar 

  • Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34:1–21

    Article  Google Scholar 

  • Sweeting MM (1973) Karst landforms. Columbia University Press, New York

    Google Scholar 

  • Trainor W, Knight R, Caers J (2007) Multiple-point geostatistics and near-surface geophysics for modeling heterogeneity in a coastal aquifer. AGU Fall Meeting Abstracts, Abstract H42B-04

  • Wang X, Jardani A, Jourde H, Lonergan L, Cosgrove J, Gosselin O, Massonnat G (2016) Characterisation of the transmissivity field of a fractured and karstic aquifer, southern France. Adv Water Resour 87:106–121

    Article  Google Scholar 

  • Wen X-H, Deutsch C, Cullick A (2002) Construction of geostatistical aquifer models integrating dynamic flow and tracer data using inverse technique. J Hydrol 255:151–168

    Article  Google Scholar 

  • White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65:85–105

    Article  Google Scholar 

  • Winston RB (2009) ModelMuse: a graphical user interface for MODFLOW-2005 and PHAST. US Geological Survey, Reston, VA

    Google Scholar 

  • Worthington RHS (1991) Karst hydrogeology of the Canadian rocky mountains. PhD Thesis, McMaster University, Hamilton, UK

  • Worthington SR (2009) Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA). Hydrogeol J 17:1665–1678

    Article  Google Scholar 

  • Wu Y-S, Liu H, Bodvarsson G (2004) A triple-continuum approach for modeling flow and transport processes in fractured rock. J Contam Hydrol 73:145–179

    Article  Google Scholar 

  • Zhang T (2008) Incorporating geological conceptual models and interpretations into reservoir modeling using multiple-point geostatistics. Earth Sci Frontiers 15:26–35

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Iran Water and Power Resources Development Company for providing the data used in this research. The authors would also like to thank two anonymous reviewers for their constructive comments and valuable suggestions, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zargham Mohammadi.

Electronic supplementary material

ESM 1

(PDF 2334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assari, A., Mohammadi, Z. Assessing flow paths in a karst aquifer based on multiple dye tracing tests using stochastic simulation and the MODFLOW-CFP code. Hydrogeol J 25, 1679–1702 (2017). https://doi.org/10.1007/s10040-017-1595-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1595-z

Keywords

Navigation