Skip to main content
Log in

Multi-layered fractured aquifer characterization: a comparative study

Caractérisation des aquifères fracturés multicouches: une étude comparative

Caracterización de acuíferos fracturados multicapa: un estudio comparativo

多层裂隙含水层表征的对比研究

Caracterização de aquífero fraturado em múltiplas camadas: um estudo comparativo

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

An effective framework for groundwater modelling is a precursor for sustainable management of regional water resources. Owing to the coexistence of contrasting hydrogeological units, modelling of groundwater flow through multi-layered fractured aquifers such as the granitic aquifers found in the Deccan region of India, requires an accurate estimation of hydraulic parameters and delineation of preferential flow-paths. There are several approaches towards this goal. This study compares seven methods by evaluating their abilities to reconstruct the hydraulic parameter distributions of a synthetic two-dimensional multi-layered aquifer analogue whose construction is based on pre-existing field data. The methods studied are (1) a homogeneous parameter model; (2) a single-hole equivalent model that provides an average of local-scale estimates; (3) a geostatistical single-hole model that involves kriging of the single-hole local-scale estimates; (4) a uniformly placed pilot-point model; (5) the sequential successive linear estimator (SSLE) algorithm; (6) a geostatistical-guided pilot-point model; and (7) a new approach that involves a pilot-point model guided by the results of the SSLE algorithm. The results of the inversions are compared visually using tomograms and by a statistical analysis of the time-drawdown datasets obtained from validation wells that were not used for calibrating the models. The uniform pilot-point model performed significantly better than the other methods. The SSLE algorithm recovered the fracture connectivity pattern with significant fidelity. Using the SSLE algorithm as a guide improved the parameter estimation at the cost of the fracture connectivity pattern.

Résumé

Un cadre efficace pour la modélisation des eaux souterraines est un prérequis pour la gestion durable des ressources en eau régionales. En raison de la coexistence d’unités hydrogéologiques contrastées, la modélisation de l’écoulement des eaux souterraines à travers des aquifères fracturés multicouches, tels que les aquifères granitiques que l’on trouve dans la région du Deccan en Inde, nécessite une estimation précise des paramètres hydrauliques et la délimitation des voies d’écoulement préférentielles. Il existe plusieurs approches pour atteindre cet objectif. Cette étude compare sept méthodes en évaluant leurs capacités à reconstruire les distributions des paramètres hydrauliques d’un analogue d’aquifère synthétique bidimensionnel multicouche dont la construction est basée sur des données de terrain préexistantes. Les méthodes étudiées sont (1) un modèle à paramètres homogènes; (2) un modèle équivalent à un seul forage qui fournit une moyenne des estimations à l’échelle locale; (3) un modèle géostatistique à un seul forage qui implique le krigeage des estimations à l’échelle locale à un seul forage; (4) un modèle à point pilote placé uniformément; (5) l’algorithme de l’estimateur linéaire séquentiel successif (SSLE); (6) un modèle à point pilote guidé par la géostatistique; et (7) une nouvelle approche qui implique un modèle à point pilote guidé par les résultats de l’algorithme SSLE. Les résultats des inversions sont comparés visuellement à l’aide de tomogrammes et par une analyse statistique des jeux de données de rabattement en fonction du temps obtenus à partir de forages de validation qui n’ont pas été utilisés pour calibrer les modèles. Le modèle à point pilote uniforme a donné de bien meilleurs résultats que les autres méthodes. L’algorithme SSLE a retrouvé le modèle de connectivité des fractures avec une fidélité significative. L’utilisation de l’algorithme SSLE comme guide a amélioré l’estimation des paramètres au détriment du modèle de connectivité des fractures.

Resumen

Un marco eficaz para la modelización de las aguas subterráneas es un factor precursor de la gestión sostenible de los recursos hídricos regionales. Debido a la coexistencia de unidades hidrogeológicas diferentes, la modelización del flujo de aguas subterráneas a través de acuíferos fracturados de múltiples capas, como los acuíferos graníticos de la región del Decán en la India, requiere una estimación precisa de los parámetros hidráulicos y la delimitación de las trayectorias de flujo preferenciales. Existen varios métodos para alcanzar este objetivo. Este estudio compara siete métodos mediante la evaluación de sus capacidades para reconstruir las distribuciones de los parámetros hidráulicos de un análogo sintético de acuífero multicapa bidimensional cuya construcción se basa en datos de campo preexistentes. Los métodos estudiados son (1) un modelo de parámetros homogéneo; (2) un modelo equivalente de un solo pozo que proporciona un promedio de las estimaciones a escala local; (3) un modelo geoestadístico de un solo pozo que implica el kriging de las estimaciones a escala local de un solo pozo; (4) un modelo de punto experimental uniformemente colocado; (5) el algoritmo del estimador lineal sucesivo secuencial (SSLE); (6) un modelo de punto experimental guiado por geoestadística; y (7) un nuevo método que implica un modelo de punto experimental guiado por los resultados del algoritmo SSLE. Los resultados de las inversiones se comparan visualmente mediante tomogramas y mediante un análisis estadístico de los conjuntos de datos de descenso temporal obtenidos de pozos de validación que no se utilizaron para calibrar los modelos. El modelo de punto experimental uniforme se comportó significativamente mejor que los otros métodos. El algoritmo SSLE recuperó el patrón de conectividad de las fracturas con una fidelidad significativa. El uso del algoritmo SSLE como guía mejoró la estimación de los parámetros a expensas del patrón de conectividad de las fracturas.

摘要

摘要 地下水建模的有效设计是区域水资源可持续管理的先决条件。由于不同水文地质单元的共存, 通过多层裂隙含水层, 例如在印度德干地区发现的花岗岩含水层, 地下水流建模需要准确估计水力参数和划定优先流动路径。有几种方法可以实现这一目标。本研究通过评估它们生成二维多层含水层结构以重建水力参数分布的效果来比较七种方法, 该结构基于预先存在的现场数据。研究的方法是 (1) 均质参数模型; (2)局部尺度平均的单孔等效模型; (3) 地质统计的单孔模型, 涉及单孔局部尺度估计的克里金法; (4) 均匀分布的试点模型; (5) 顺序连续线性估计器 (SSLE) 算法; (6) 地质统计先导的试验点模型; (7) 一种新方法, 该方法涉及由 SSLE 算法的结果先导的试验点模型。反演的结果使用断层扫描图和从未用于校准模型的验证井获得的时间下降数据集的统计分析进行可视化比较。均匀的试点模型性能明显优于其他方法。 SSLE 算法以显著的准确度再现裂缝连通模式。使用 SSLE 算法作为工具可改进以裂缝连通性为代价的参数估计。

Resumo

Resumo Uma estrutura eficaz para modelagem de águas subterrâneas é um precursor para a gestão sustentável dos recursos hídricos regionais. Devido à coexistência de unidades hidrogeológicas contrastantes, a modelagem do fluxo de água subterrânea através de aquíferos fraturados de várias camadas, como os aquíferos graníticos encontrados na região de Deccan da Índia, requer uma estimativa precisa dos parâmetros hidráulicos e delineamento de caminhos de fluxo preferenciais. Existem várias abordagens para esse objetivo. Este estudo compara sete métodos avaliando suas habilidades para reconstruir as distribuições de parâmetros hidráulicos de um análogo sintético bidimensional de aquífero multicamadas cuja construção é baseada em dados de campo pré-existentes. Os métodos estudados são (1) um modelo de parâmetros homogêneo; (2) um modelo equivalente de furo único que fornece uma média de estimativas em escala local; (3) um modelo geoestatístico de furo único que envolve a krigagem das estimativas em escala local de furo único; (4) um modelo de ponto piloto uniformemente colocado; (5) o algoritmo do estimador linear sucessivo sequencial (SSLE); (6) um modelo de ponto piloto geoestatístico; e (7) uma nova abordagem que envolve um modelo de ponto piloto guiado pelos resultados do algoritmo SSLE. Os resultados das inversões são comparados visualmente usando tomogramas e por uma análise estatística dos conjuntos de dados de redução de tempo obtidos a partir de poços de validação que não foram usados ​​para calibrar os modelos. O modelo de ponto piloto uniforme teve um desempenho significativamente melhor do que os outros métodos. O algoritmo SSLE recuperou o padrão de conectividade de fratura com fidelidade significativa. Usar o algoritmo SSLE como um guia melhorou a estimativa de parâmetro ao custo do padrão de conectividade de fratura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Berg SJ, Illman WA (2011) Three-dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer-aquitard system. Water Resour Res 47(10):W10507

  • Berg SJ, Illman WA (2012) Improved predictions of saturated and unsaturated zone drawdowns in a heterogeneous unconfined aquifer via transient hydraulic tomography: laboratory sandbox experiments. J Hydrol 470:172–183

    Article  Google Scholar 

  • Berg SJ, Illman WA (2013) Field study of subsurface heterogeneity with steady-state hydraulic tomography. Groundwater 51(1):29–40

    Article  Google Scholar 

  • Berg SJ, Illman WA (2015) Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site. Groundwater 53:71–89. https://doi.org/10.1111/gwat.12159

    Article  Google Scholar 

  • Boisson A, Guihéneuf N, Perrin J, Bour O, Dewandel B, Dausse A, Maréchal JC (2015) Determining the vertical evolution of hydrodynamic parameters in weathered and fractured south Indian crystalline-rock aquifers: insights from a study on an instrumented site. Hydrogeol J 23(4):757–773

    Article  Google Scholar 

  • Brauchler R, Böhm G, Leven C, Dietrich P, Sauter M (2013) A laboratory study of tracer tomography. Hydrogeol J 21:1265–1274. https://doi.org/10.1007/s10040-013-1006-z

    Article  Google Scholar 

  • Butler JJ, Liu W (1993) Pumping tests in non-uniform aquifers: the radially asymmetric case. Adv Water Resour 29:259–269. https://doi.org/10.1029/92WR02128

    Article  Google Scholar 

  • Butler JJ, McElwee CD, Bohling GC (1999) Pumping tests in networks of multilevel sampling wells: motivation and methodology. Adv Water Resour 35:3553–3560. https://doi.org/10.1029/1999WR900231

    Article  Google Scholar 

  • Castagna M, Becker MW, Bellin A (2011) Joint estimation of transmissivity and storativity in a bedrock fracture. Water Resour Res 47:1–19. https://doi.org/10.1029/2010WR009262

    Article  Google Scholar 

  • Chapman SW, Parker BL, Cherry JA, Martin P, Abbey D, McDonald SD (2014) Combined EPM-DFN modeling approach for plumes in sedimentary bedrock aquifers. DFNE-International Conference on Discrete Fracture Network Engineering, Vancouver, Canada, October 2014

  • Dausman AM, Doherty J, Langevin CD, Sukop MC (2010) Quantifying data worth toward reducing predictive uncertainty. Groundwater 48(5):729–740

    Article  Google Scholar 

  • Dewandel B, Lachassagne P, Zaidi FK, Chandra S (2011) A conceptual hydrodynamic model of a geological discontinuity in hard rock aquifers: example of a quartz reef in granitic terrain in South India. J Hydrol 405(3–4):474–487

    Article  Google Scholar 

  • Dewandel B, Maréchal JC, Bour O, Ladouche B, Ahmed S, Chandra S, Pauwels H (2012) Upscaling and regionalizing hydraulic conductivity and effective porosity at watershed scale in deeply weathered crystalline aquifers. J Hydrol 416:83–97

    Article  Google Scholar 

  • Doherty J (2003) Ground water model calibration using pilot points and regularization. Groundwater 41(2):170–177. https://doi.org/10.1111/j.1745-6584.2003.tb02580.x

    Article  Google Scholar 

  • Doherty J (2010a) PEST: model-independent parameter estimation. Watermark, Brisbane, Australia. pesthomepage.org. Accessed November 2021

  • Doherty J (2010b) PEST groundwater data utilities. Watermark, Brisbane, Australia. pesthomepage.org. Accessed November 2021

  • Doherty J, Hunt R (2010) Approaches to highly parameterized inversion: a guide to using PEST for groundwater-model calibration. US Geol Surv Sci Invest Rep 2010-5211, pp 51–70

  • Dong Y, Fu Y, Yeh TCJ, Wang YL, Zha Y, Wang L, Hao Y (2019) Equivalence of discrete fracture network and porous media models by hydraulic tomography. Water Resour Res 55(4):3234–3247

    Article  Google Scholar 

  • Fienen MN, Muffels CT, Hunt RJ (2009) On constraining pilot point calibration with regularization in PEST. Groundwater. https://doi.org/10.1111/j.1745-6584.2009.00579.x

  • Fischer P, Jardani A, Lecoq N (2018) Hydraulic tomography of discrete networks of conduits and fractures in a karstic aquifer by using a deterministic inversion algorithm. Adv Water Resour 112:83–94. https://doi.org/10.1016/j.advwatres.2017.11.029

  • Frind EO, Molson JW (2018) Issues and options in the delineation of well capture zones under uncertainty. Groundwater 56(3):366–376

    Article  Google Scholar 

  • Gottlieb J, Dietrich P (1995) Identification of the permeability distribution in soil by hydraulic tomography. Inverse Problems 11:353–360. https://doi.org/10.1088/0266-5611/11/2/005

    Article  Google Scholar 

  • Hao Y, Yeh TCJ, Xiang J, Illman WA, Ando K, Hsu KC, Lee CH (2008) Hydraulic tomography for detecting fracture zone connectivity. Groundwater 46(2):183–192

    Article  Google Scholar 

  • Herckenrath D, Langevin CD, Doherty J (2011) Predictive uncertainty analysis of a saltwater intrusion model using null-space Monte Carlo. Water Resour Res 47(5). https://doi.org/10.1029/2010WR009342

  • Huang S-Y, Wen J-C, Yeh T-CJ, Lu W, Juan H-L, Tseng C-M, Lee J-H, Chang K-C (2011) Robustness of joint interpretation of sequential pumping tests: numerical and field experiments. Water Resour Res 47(10). https://doi.org/10.1029/2010WR009342

  • Illman WA (2014) Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks. Groundwater 52(5):659–684

    Article  Google Scholar 

  • Illman WA, Liu X, Craig A (2007) Steady-state hydraulic tomography in a laboratory aquifer with deterministic heterogeneity: multi-method and multiscale validation of hydraulic conductivity tomograms. J Hydrol 341:222–234. https://doi.org/10.1016/j.jhydrol.2007.05.011

    Article  Google Scholar 

  • Illman WA, Liu X, Takeuchi S, Yeh T-CJ, Ando K, Saegusa H (2009) Hydraulic tomography in fractured granite: Mizunami Underground Research Site, Japan. Water Resour Res 45(1):1–8. https://doi.org/10.1029/2007WR006715

    Article  Google Scholar 

  • Illman WA, Zhu J, Craig AJ, Yin D (2010) Comparison of aquifer characterization approaches through steady state groundwater model validation: a controlled laboratory sandbox study. Water Resour Res (4):46. https://doi.org/10.1029/2009WR007745

  • Illman WA, Berg SJ, Alexander M (2012) Cost comparisons of aquifer heterogeneity characterization methods. Groundw Monitor Remediat 32(2):57–65

    Article  Google Scholar 

  • Illman WA, Berg SJ, Zhao Z (2015) Should hydraulic tomography data be interpreted using geostatistical inverse modeling? a laboratory sandbox investigation. Water Resour Res 51(5):3219–3237

    Article  Google Scholar 

  • Jiménez S, Brauchler R, Bayer P (2013) A new sequential procedure for hydraulic tomographic inversion. Adv Water Resour 62:59–70. https://doi.org/10.1016/j.advwatres.2013.10.002

    Article  Google Scholar 

  • Klaas DK, Imteaz M, Sudiayem I, Klaas EM, Klaas EC (2019) Parameterisation of physical models to configure subsurface characteristics of groundwater basins. Groundw Sustain Dev 9:100255

    Article  Google Scholar 

  • Lavenue M, De Marsily G (2001) Three-dimensional interference test interpretation in a fractured aquifer using the pilot point inverse method. Water Resour Res 37(11):2659–2675

    Google Scholar 

  • Li W, Englert A, Cirpka OA, Vanderborght J, Vereecken H (2007) Two-dimensional characterization of hydraulic heterogeneity by multiple pumping tests. Water Resour Res 43(4). https://doi.org/10.1029/2006WR005333

  • Liu S, Jim Yeh T-C, Gardiner R (2002) Effectiveness of hydraulic tomography: sand-box experiments. Water Resour Res 38(4):1–5

    Article  Google Scholar 

  • Mizan SA, Dewandel B, Selles A, Ahmed S, Caballero Y (2019) A simple groundwater balance tool to evaluate the three-dimensional specific yield and the two-dimensional recharge: application to a deeply weathered crystalline aquifer in southern India. Hydrogeol J 27(8):3063–3080

    Article  Google Scholar 

  • Moeck C, Hunkeler D, Brunner P (2015) Tutorials as a flexible alternative to GUIs: an example for advanced model calibration using pilot points. Environ Model Softw 66:78–86

    Article  Google Scholar 

  • Moeck C, Molson J, Schirmer M (2020) Pathline density distributions in a null-space Monte Carlo approach to assess groundwater pathways. Groundwater 58(2):189–207

    Article  Google Scholar 

  • Neuman SP (1988) Stochastic continuum representation of fractured rock permeability as an alternative to the REV and fracture network concepts. In: Groundwater flow and quality modelling. Springer, Dordrecht, The Netherlands, pp 331–362

    Chapter  Google Scholar 

  • Neuman SP (2005) Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol J 13(1):124–147

    Article  Google Scholar 

  • Ni CF, Yeh TCJ (2008) Stochastic inversion of pneumatic cross-hole tests and barometric pressure fluctuations in heterogeneous unsaturated formations. Adv Water Resour 31(12):1708–1718. https://doi.org/10.1016/j.advwatres.2008.08.007

  • Poduri S, Kambhammettu BVNP (2020) On the performance of pilot-point based hydraulic tomography with a geophysical a priori model. Groundwater. https://doi.org/10.1111/gwat.13053

  • Poduri S, Kambhammettu BVNP, Gorugantula S (2021) A new randomized binary prior model for hydraulic tomography in fractured aquifers. Groundwater. https://doi.org/10.1111/gwat.13074

  • Renard P (2007) Stochastic hydrogeology: what professionals really need? Groundwater 45(5):531–541

    Article  Google Scholar 

  • Sharmeen R, Illman WA, Berg SJ, Yeh T-CJ, Park Y-J, Sudicky EA, Ando K (2012) Transient hydraulic tomography in a fractured dolostone: laboratory rock block experiments. Water Resour Res (10):48

  • Singhal BBS, Gupta RP (2010) Applied hydrogeology of fractured rocks. Springer, Heidelberg, Germany

    Book  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192

    Article  Google Scholar 

  • Tonkin M, Doherty J (2009) Calibration-constrained Monte Carlo analysis of highly parameterized models using subspace techniques. Water Resour Res 45(12). https://doi.org/10.1029/2007WR006678

  • Tso M, Chak-Hau YZ, Yeh T-CJ, Wen J-C (2016) The relative importance of head, flux, and prior information in hydraulic tomography analysis. Water Resour Res 52(1):3–20

    Article  Google Scholar 

  • Vesselinov VV, Neuman SP, Illman WA (2001a) Three dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff: 1. methodology and borehole effects. Water Resour Res 37(12):3001–3017. https://doi.org/10.1029/2000WR000133

    Article  Google Scholar 

  • Vesselinov VV, Neuman SP, Illman WA (2001b) Three dimensional numerical inversion of pneumatic cross-hole tests in unsaturated fractured tuff: 2. equivalent parameters, high-resolution stochastic imaging and scale effects. Water Resour Res 37(12):3019–3041. https://doi.org/10.1029/2000WR000135

    Article  Google Scholar 

  • Yeh TCJ, Liu S (2000) Hydraulic tomography: development of a new aquifer test method. Water Resour Res 36:2095–2105. https://doi.org/10.1029/2000WR900114

    Article  Google Scholar 

  • Zhao Z, Illman WA (2017) On the importance of geological data for three-dimensional steady-state hydraulic tomography analysis at a highly heterogeneous aquifer–aquitard system. J Hydrol 544:640–657

    Article  Google Scholar 

  • Zhu J, Yeh T-CJ (2005) Characterization of aquifer heterogeneity using transient hydraulic tomography. Water Resour Res 41(7). https://doi.org/10.1016/j.jhydrol.2020.125137

Download references

Acknowledgements

The authors sincerely thank the President and CEO of Aquanty, Dr. Steven Berg, for technical support and guidance in using the software HydroGeoSphere (HGS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarada Poduri.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poduri, S., Kambhammettu, B.P. Multi-layered fractured aquifer characterization: a comparative study. Hydrogeol J 30, 121–131 (2022). https://doi.org/10.1007/s10040-021-02424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02424-x

Keywords

Navigation