Skip to main content
Log in

Biomass Stock and Productivity of Primeval and Production Beech Forests: Greater Canopy Structural Diversity Promotes Productivity

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Our knowledge of temperate broadleaf forest ecology is based mostly on the study of production forests, which lack the terminal stage of forest development and have a simpler stand structure than old-growth and primeval forests. How primeval and production forests differ in net primary production (NPP) is not well known. In three primeval and three nearby production forests of European beech (Fagus sylvatica) in the Slovakian Carpathians, we measured aboveground biomass stocks (live and dead), aboveground NPP (ANPP) and parameters characterizing canopy structural diversity (leaf area index and its spatial variation). Our study aims were (1) to explore the role of canopy structural diversity for ANPP and (2) to assess evidence of a productivity decline in the terminal stage. While aboveground live biomass stocks were on average 20% greater in the primeval forests (386 vs. 320 Mg ha−1; insignificant difference at two sites), deadwood mass stocks were on average four times larger than in the production forests (86 vs. 19 Mg ha−1). ANPP was similarly high in the primeval and production forests (10.0 vs. 9.9 Mg ha−1 y−1) and did not decrease towards the terminal stage. Production models indicate that, in the primeval forests, about 10% of ANPP (ca. 1 Mg ha−1 y−1) was generated by effects related to leaf area heterogeneity, evidencing a positive effect of structural diversity on forest productivity, even though species diversity was low. This study helps to better understand the impact of forest management on the productivity and carbon storage in temperate woodlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

REFERENCES

  • Albrecht L. 1991. Die Bedeutung des toten Holzes im Wald. Forstwissenschaftliches Centralblatt vereinigt mit Tharandter Forstliches Jahrbuch 110:106–13.

    Article  Google Scholar 

  • Annighöfer P, Ameztegui A, Ammer C, Balandier P, Bartsch N, Bolte A, Coll L, Collet C, Ewald J, Frischbier N, Gebereyesus T, Haase J, Hamm T, Hirschfelder B, Huth F, Kändler G, Kahl A, Kawaletz H, Kuehne C, Lacointe A, Lin N, Löf M, Malagoli P, Marquier A, Müller S, Promberger S, Provendier D, Röhle H, Sathornkich J, Schall P, Scherer-Lorenzen M, Schröder J, Seele C, Weidig J, Wirth C, Wolf H, Wollmerstädt J, Mund M. 2016. Species-specific and generic biomass equations for seedlings and saplings of European tree species. Eur J For Res 135:313–29.

    Article  Google Scholar 

  • Assmann E, Davis PW. 1970. The principles of forest yield study. Studies in the organic production, structure, increment and yield of forest stands. Elsevier Science: Burlington. p 521.

    Google Scholar 

  • Bartsch N, Röhrig E. 2016. Waldökologie. Einführung für Mitteleuropa. Berlin, Heidelberg: Springer Spektrum. p 417.

    Book  Google Scholar 

  • Böhl J, Brändli U-B. 2007. Deadwood volume assessment in the third Swiss National Forest Inventory. Methods and first results. Eur J For Res 126:449–57.

    Article  Google Scholar 

  • Bohn FJ, Huth A. 2017. The importance of forest structure to biodiversity-productivity relationships. R Soc Open Sci 4:160521.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bohn U, Neuhäusl R, Gollub R, Hettwer C, Neuhäuslova Z, Schlüter H, Weber H. 2003. Karte der natürlichen Vegetation Europas. Teil 1: Erläuterungstext. Münster: Landwirtschaftsverlag.

    Google Scholar 

  • Bourdier T, Cordonnier T, Kunstler G, Piedallu C, Lagarrigues G, Courbaud B. 2016. Tree size inequality reduces forest productivity: an analysis combining inventory data for ten European species and a light competition model. PloS ONE 11:e0151852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Canty A, Ripley B. 2016. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-18.

  • Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE. 2009. Towards a worldwide wood economics spectrum. Ecol Lett 12:351–66.

    Article  PubMed  Google Scholar 

  • Chen JM, Black TA, Adams RS. 1991. Evaluation of hemispherical photography for determining plant area index and geometry of a forest stand. Agricultural and Forest Meteorology 56:129–43.

    Article  CAS  Google Scholar 

  • Commarmot B, Bachofen H, Bundziak Y, Bürgi A, Ramp B, Shparyk Y, Sukhariuk D, Viter R, Zingg A. 2005. Structures of virgin and managed beech forests in Uholka (Ukraine) and Sihlwald (Switzerland): a comparative study. For Snow Landsc Res 79:45–56.

    Google Scholar 

  • D\(\check{\text{a}}\)nescu A, Albrecht AT, Bauhus J. 2016. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia 182:319–33.

  • Davison AC, Hinkley DV. 2009. Bootstrap methods and their application. Cambridge, NY: Cambridge University Press. 582 p.

    Google Scholar 

  • Drößler L, von Lüpke B. 2005. Canopy gaps in two virgin beech forest reserves in Slovakia. J For Sci 51:446–57.

    Article  Google Scholar 

  • Ehbrecht M, Schall P, Juchheim J, Ammer C, Seidel D. 2016. Effective number of layers. A new measure for quantifying three-dimensional stand structure based on sampling with terrestrial LiDAR. For Ecol Manag 380:212–23.

    Article  Google Scholar 

  • Fahey RT, Fotis AT, Woods KD. 2015. Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock–hardwood forests. Ecol Appl 15:834–47.

    Article  Google Scholar 

  • Feldmann E, Glatthorn J, Hauck M, Leuschner C. unpublished Manuscript a. A novel empirical approach for determining the extension of different forest development stages in old-growth forests.

  • Feldmann E, Hauck M, Leuschner C. unpublished Manuscript b. Temporal changes in disturbance intensity and regeneration processes regulate canopy gap dynamics and drive structural complexity in a Slovakian primeval beech forest.

  • Forrester DI, Bauhus J. 2016. A review of processes behind diversity—productivity relationships in forests. Curr For Rep 2:45–61.

    Article  CAS  Google Scholar 

  • Genet H, Breda N, Dufrene E. 2010. Age-related variation in carbon allocation at tree and stand scales in beech (Fagus sylvatica L.) and sessile oak (Quercus petraea (Matt.) Liebl.) using a chronosequence approach. Tree Physiol 30:177–92.

    Article  PubMed  CAS  Google Scholar 

  • Glatthorn J, Pichler V, Hauck M, Leuschner C. 2017. Effects of forest management on stand leaf area. Comparing beech production and primeval forests in Slovakia. For Ecol Manag 389:76–85.

    Article  Google Scholar 

  • Gough CM, Curtis PS, Hardiman BS, Scheuermann CM, Bond-Lamberty B. 2016. Disturbance, complexity, and succession of net ecosystem production in North America’s temperate deciduous forests. Ecosphere 7:e01375.

    Article  Google Scholar 

  • Hardiman BS, Bohrer G, Gough CM, Vogel CS, Curtis PS. 2011. The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology 92:1818–27.

    Article  PubMed  Google Scholar 

  • Hardiman BS, Gough CM, Halperin A, Hofmeister KL, Nave LE, Bohrer G, Curtis PS. 2013. Maintaining high rates of carbon storage in old forests. A mechanism linking canopy structure to forest function. For Ecol Manag 298:111–19.

    Article  Google Scholar 

  • He L, Chen JM, Pan Y, Birdsey R, Kattge J. 2012. Relationships between net primary productivity and forest stand age in U.S. forests. Global Biogeochem Cycles 26.

  • Hobi ML, Commarmot B, Bugmann H, Woods K. 2015. Pattern and process in the largest primeval beech forest of Europe (Ukrainian Carpathians). J Veg Sci 26:323–36.

    Article  Google Scholar 

  • Ishii HT, Tanabe S, Hiura T. 2004. Exploring the relationships among canopy structure, stand productivity, and biodiversity of temperature forest ecosystems. For Sci 50:342–55.

    Google Scholar 

  • Jacob M, Leuschner C, Thomas FM. 2010. Productivity of temperate broad-leaved forest stands differing in tree species diversity. Ann For Sci 67:503.

    Article  Google Scholar 

  • Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F. 2004. Review of methods for in situ leaf area index determination. Agricul For Meteorol 121:19–35.

    Article  Google Scholar 

  • Korpeĺ Š. 1995. Die Urwälder der Westkarpaten. Stuttgart: Gustav Fischer Verlag.

    Google Scholar 

  • Král K, Vrška T, Hort L, Adam D, Šamonil P. 2010. Developmental phases in a temperate natural spruce–fir–beech forest. Determination by a supervised classification method. Eur J For Res 129:339–51.

    Article  Google Scholar 

  • Kramer H, Akça A. 2008. Leitfaden zur Waldmesslehre. Frankfurt am Main: Sauerländer. p 226.

    Google Scholar 

  • Larsen JB, Hahn K, Emborg J. 2010. Forest reserve studies as inspiration for sustainable forest management—Lessons learned from Suserup Skov in Denmark. Forstarchiv 81:28–33.

    Google Scholar 

  • Lei X, Wang W, Peng C. 2009. Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Can J For Res 39:1835–47.

    Article  Google Scholar 

  • Leuschner C, Ellenberg H. 2017. Ecology of Central European Forests—Vegetation Ecology of Ccentral Europe, Vol. I. Switzerland: Springer.

    Book  Google Scholar 

  • Liang J, Crowther TW, Picard N, Wiser S, Zhou M, Alberti G, Schulze E-D, McGuire AD, Bozzato F, Pretzsch H, de Miguel S, Paquette A, Herault B, Scherer-Lorenzen M, Barrett CB, Glick HB, Hengeveld GM, Nabuurs G-J, Pfautsch S, Viana H, Vibrans Vibrans, Ammer C, Schall P, Verbyla D, Tchebakova N, Fischer M, Watson JV, Chen HYH, Lei X, Schelhaas M-J, Lu H, Gianelle D, Parfenova EI, Salas C, Lee E, Lee B, Kim HS, Bruelheide H, Coomes DA, Piotto D, Sunderland T, Schmid B, Gourlet-Fleury S, Sonke B, Tavani R, Zhu J, Brandl S, Vayreda J, Kitahara F, Searle EB, Neldner VJ, Ngugi MR, Baraloto C, Frizzera L, Balazy R, Oleksyn J, Zawila-Niedzwiecki T, Bouriaud O, Bussotti F, Finer L, Jaroszewicz B, Jucker T, Valladares F, Jagodzinski AM, Peri PL, Gonmadje C, Marthy W, O’Brien T, Martin EH, Marshall AR, Rovero F, Bitariho R, Niklaus PA, Alvarez-Loayza P, Chamuya N, Valencia R, Mortier F, Wortel V, Engone-Obiang NL, Ferreira LV, Odeke DE, Vasquez RM, Lewis SL, Reich PB. 2016. Positive biodiversity-productivity relationship predominant in global forests. Science 354:196.

    Article  CAS  Google Scholar 

  • Lichstein JW, Wirth C, Horn HS, Pacala SW. 2009. Biomass chronosequences of United States forests: implications for carbon storage and forest management. In: Wirth C, Gleixner G, Heimann M, Eds. Old-growth forests: function, fate and value. Berlin, Heidelberg: Springer. p 301–41.

    Chapter  Google Scholar 

  • Lindenmayer DB, Franklin JF, Fischer J. 2006. General management principles and a checklist of strategies to guide forest biodiversity conservation. Biol Conserv 131:433–45.

    Article  Google Scholar 

  • Long JN, Shaw JD. 2010. The influence of compositional and structural diversity on forest productivity. Forestry 83:121–8.

    Article  Google Scholar 

  • Luyssaert S, Schulze E-D, Borner A, Knohl A, Hessenmoller D, Law BE, Ciais P, Grace J. 2008. Old-growth forests as global carbon sinks. Nature 455:213–15.

    Article  PubMed  CAS  Google Scholar 

  • Marušák R. 2007. Alternative harvest scheduling for final cut with respect to silvicultural requirements. Lesnícky časopis For J 53:117–27.

    Google Scholar 

  • Mencuccini M, Grace J. 1996. Hydraulic conductance, light interception and needle nutrient concentration in Scots Hydraulic conductance, light interception and needle nutrient concentration in Scots pine stands (Thetford, UK) and their relations with net aboveground primary production.pine stands and their relations with net primary productivity. Tree Physiol 16:459–68.

    Article  PubMed  CAS  Google Scholar 

  • Merino A, Real C, Álvarez-González JG, Rodríguez-Guitián MA. 2007. Forest structure and C stocks in natural Fagus sylvatica forest in southern Europe. The effects of past management. For Ecol Manag 250:206–14.

    Article  Google Scholar 

  • Meyer P. 1999. Totholzuntersuchungen in nordwestdeutschen Naturwäldern: Methodik und erste Ergebnisse. Forstwissenschaftliches Centralblatt vereinigt mit Tharandter Forstliches Jahrbuch 118:167–80.

    Article  Google Scholar 

  • Miller JB. 1967. A formula for average foliage density. Aust J Bot 15:141–4.

    Article  Google Scholar 

  • Müller-Haubold H, Hertel D, Seidel D, Knutzen F, Leuschner C. 2013. Climate responses of aboveground productivity and allocation in Fagus sylvatica. A transect study in mature forests. Ecosystems 16:1498–516.

    Article  CAS  Google Scholar 

  • Mura M, McRoberts RE, Chirici G, Marchetti M. 2015. Estimating and mapping forest structural diversity using airborne laser scanning data. Remote Sens Environ 170:133–42.

    Article  Google Scholar 

  • National Forest Centre. 2009. Forests in Slovakia. Bratislava: Ministry of Agriculture of the Slovak Republic.

    Google Scholar 

  • Odum EP. 1969. The strategy of ecosystem development. Science 164:262–70.

    Article  PubMed  CAS  Google Scholar 

  • Oliver CD, Larson BC. 1996. Forest stand dynamics. New York: Wiley.

    Google Scholar 

  • Parviainen J. 2005. Virgin and natural forests in the temperate zone of Europe. For Snow Landsc Res 79:9–18.

    Google Scholar 

  • Pretzsch H. 2005. Diversity and productivity in forests: evidence from long-term experimental Plots. In: Scherer-Lorenzen M, Körner C, Schulze E-D, Eds. Forest diversity and function: temperate and boreal systems. Berlin, Heidelberg: Springer Berlin Heidelberg. p 41–64.

    Chapter  Google Scholar 

  • Pretzsch H, Biber P, Uhl E, Dauber E. 2015. Long-term stand dynamics of managed spruce–fir–beech mountain forests in Central Europe. Structure, productivity and regeneration success. Forestry 88:407–28.

    Article  Google Scholar 

  • Pretzsch H, del Río M, Schütze G, Ammer C, Annighöfer P, Avdagic A, Barbeito I, Bielak K, Brazaitis G, Coll L, Drössler L, Fabrika M, Forrester DI, Kurylyak V, Löf M, Lombardi F, Matović B, Mohren F, Motta R, den Ouden J, Pach M, Ponette Q, Skrzyszewski J, Sramek V, Sterba H, Svoboda M, Verheyen K, Zlatanov T, Bravo-Oviedo A. 2016. Mixing of Scots pine (Pinus sylvestris L.) and European beech (Fagus sylvatica L.) enhances structural heterogeneity, and the effect increases with water availability. For Ecol Manag 373:149–66.

    Article  Google Scholar 

  • Přívětivý T, Janík D, Unar P, Adam D, Král K, Vrška T. 2016. How do environmental conditions affect the deadwood decomposition of European beech (Fagus sylvatica L.)? For Ecol Manag 381:177–87.

    Article  Google Scholar 

  • R Core Team. 2017. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Report Green. 2009. Report on the status of forestry in the Slovak Republic of 2009. Bratislava: Ministry of Agriculture of the Slovak Republic.

    Google Scholar 

  • Röhrig E. 1991. Biomass and productivity. In: Röhrig E, Ulrich B, Eds. Ecosystems of the world (Temperate Deciduous Forests). Amsterdam: Elsevier. p 165–74

    Google Scholar 

  • Ruiz-Peinado R, Del Rio M, Montero G. 2011. New models for estimating the carbon sink capacity of Spanish softwood species. For Syst 20:176–88.

    Article  Google Scholar 

  • Ryan MG, Binkley D, Fownes JH. 1997. Age-related decline in forest productivity: pattern and process. In: Nedwell DB, Fitter AH, Eds. Advances in ecological research. London: Elsevier Textbooks. p 213–62.

    Google Scholar 

  • Scherer-Lorenzen M, Körner C, Schulze E-D. 2005. The functional signficance of forest diversity: a synthesis. In: Scherer-Lorenzen M, Körner C, Schulze E-D, Eds. Forest Diversity and Function: Temperate and Boreal Systems. Berlin, Heidelberg: Springer. p 377–89.

    Chapter  Google Scholar 

  • Schulze E-D, Hassenmoeller D, Knohl A, Luyssaert S, Boerner A, Grace J. 2009. Temperate and boreal old-growth forests: how do their growth dynamics and biodiversity differ from young stands and managed forests? In: Wirth C, Gleixner G, Heimann M, Eds. Old-growth forests: function, fate and value. Berlin Heidelberg: Springer. p 343–66.

    Chapter  Google Scholar 

  • Schulze E-D, Wirth C, Mollicone D, Ziegler W. 2005. Succession after stand replacing disturbances by fire, wind throw, and insects in the dark Taiga of Central Siberia. Oecologia 146:77–88.

    Article  PubMed  Google Scholar 

  • Soares AA, Leite HG, Souza AL, Silva SR, Lourenço HM, Forrester DI. 2016. Increasing stand structural heterogeneity reduces productivity in Brazilian Eucalyptus monoclonal stands. For Ecol Manag 373:26–32.

    Article  Google Scholar 

  • Stage AR. 1976. An expression for the effect of aspect, slope, and habitat type on tree growth. For Sci 22:457–60.

    Google Scholar 

  • Stuart-Haëntjens EJ, Curtis PS, Fahey RT, Vogel CS, Gough CM. 2015. Net primary production of a temperate deciduous forest exhibits a threshold response to increasing disturbance severity. Ecology 96:2478–87.

    Article  PubMed  Google Scholar 

  • Tabaku V. 2000. Struktur von Buchen-Urwäldern in Albanien im Vergleich mit deutschen Buchen-Naturwaldreservaten und -Wirtschaftswäldern. Göttingen: Cuvillier Verlag.

    Google Scholar 

  • Utschig H, Küsters E. 2003. Wachstumsreaktionen der Buche (Fagus sylvatica (L.)) auf Durchforstungen? 130-jährige Beobachtung des Durchforstungsversuches Elmstein 20. Forstwissenschaftliches Centralblatt 122:389–409.

    Article  Google Scholar 

  • van der Maaten E. 2012. Climate sensitivity of radial growth in European beech (Fagus sylvatica L.) at different aspects in southwestern Germany. Trees 26:777–88.

    Article  Google Scholar 

  • von Gadow K, Chun YZ, Wehenkel C, Pommerening A, Corral-Rivas J, Korol M, Myklush S, Hui GY, Kiviste A, Zhao XH. 2012. Forest structure and diversity. In: Pukkala T, von Gadow K, Eds. Continuous cover forestry. Springer Netherlands: Dordrecht. p 29–83

    Chapter  Google Scholar 

  • von Gadow K, Zhang G, Durrheim G, Drew D, Seydack A. 2016. Diversity and production in an Afromontane forest. For Ecosyst 3:137.

    Article  Google Scholar 

  • Wutzler T, Wirth C, Schumacher J. 2008. Generic biomass functions for Common beech (Fagus sylvatica) in Central Europe. Predictions and components of uncertainty. Can J For Res 38:1661–75.

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Elphick CS. 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1:3–14.

    Google Scholar 

Download references

ACKNOWLEDGEMENTS

This study was possible through a grant of the Stemmler Foundation, a member of the Stifterverband für die Deutsche Wissenschaft, to C. Leuschner and M. Hauck. This support is gratefully acknowledged. We are also grateful to the Poloniny National Park authority, the local forest administrations and the Ministry of Defence of the Slovak Republic for the permits to conduct the study and for technical support during the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Glatthorn.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Authors’ contributions

CL, MH and VP conceived and designed the field study. JG and EF performed the inventory. JG and EF analyzed the data. JG and CL wrote the manuscript; other authors provided editorial advice.

URL for the data reported in the manuscript: https://doi.pangaea.de/10.1594/PANGAEA.880167.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glatthorn, J., Feldmann, E., Pichler, V. et al. Biomass Stock and Productivity of Primeval and Production Beech Forests: Greater Canopy Structural Diversity Promotes Productivity. Ecosystems 21, 704–722 (2018). https://doi.org/10.1007/s10021-017-0179-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0179-z

Key words

Navigation