Skip to main content

Advertisement

Log in

Recent Climate Warming-Related Growth Decline Impairs European Beech in the Center of Its Distribution Range

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Increasing summer droughts represent a major threat for the vitality and productivity of forests in the temperate zone. European beech, the most important tree species of Central Europe’s natural forest vegetation, is known to suffer from increased drought intensity at its southern distribution limits, but it is not well known how this species is affected in the center of its distribution range in a sub-oceanic climate. We compared tree-ring chronologies and the climate sensitivity of growth (MS) in 11 mature beech stands along a precipitation gradient (855–576 mm y−1) on two soil types with contrasting water storage capacity (WSC) in northwest Germany to test the hypotheses that recent warming is impairing beech growth also in the center of its distribution below a certain precipitation limit, and stands with low soil WSC are more susceptible. We found a threshold of about 350 mm of mean growing season precipitation below which basal area increment (BAI) showed a consistent decline since the 1970s. The frequency of negative pointer years and MS were highest in low-precipitation stands on sandy soil, but both parameters have increased during the last decades also in the moister stands. The factor with largest impact on BAI was precipitation in June, in combination with high mid-summer temperatures. Contrary to our hypothesis, the edaphic effect on growth dynamics was surprisingly small. We conclude that global warming-related growth decline is affecting European beech even in the center of its distribution below a hydrological threshold that is mainly determined by mid-summer rainfall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

REFERENCES

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M et al. 2010. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–4.

    Article  Google Scholar 

  • Alvarez-Uria P, Körner C. 2007. Low temperature limits of root growth in deciduous and evergreen temperate tree species. Funct Ecol 21:211–18.

    Article  Google Scholar 

  • Babst F, Poulter B, Trouet V, Tan K, Neuwirth B, Wilson R et al. 2013. Site- and species-specific responses of forest growth to climate across the European continent. Glob Ecol Biogeogr 22:706–17.

    Article  Google Scholar 

  • Baillie MGL, Pilcher JR. 1973. A simple crossdating program for tree-ring research. Tree Ring Bull 33:7–11.

    Google Scholar 

  • Beck W. 2009. Growth patterns of forest stands-the response towards pollutants and climatic impact. iFor Biogeosci For 2:4–6.

    Article  Google Scholar 

  • Beck W. 2011. Impact of drought and heat on tree and stand vitality—results of the study commissioned by the Federal Ministry of Food, Agriculture and Consumer Protection. In: Maaten-Theunissen M, Spiecker H, Gärtner H, Helle G, Heinrich I, Eds. TRACE—tree rings in archaeology, climatology and ecology. GFZ: Potsdam. p 20–7.

    Google Scholar 

  • Beck W, Heußner KU. 2012. Increased sensitivity in ring width series of common beech after 1990—climatic impact or normal patterns due to ageing? Dendrosymposium 10:13–19.

    Google Scholar 

  • Biondi F. 1993. Climatic signals in tree rings of Fagus sylvatica L. from the central Apennines, Italy. Acta Oecol 14:57–71.

    Google Scholar 

  • Biondi F. 1999. Comparing tree-ring chronologies and repeated timber inventories as forest monitoring tools. Ecol Appl 9:216–27.

    Article  Google Scholar 

  • Biondi F, Qeadan F. 2008. A theory-driven approach to tree-ring standardization: defining the biological trend from expected basal area increment. Tree Ring Res 64:81–96.

    Article  Google Scholar 

  • BMEL. 2014. Der Wald in Deutschland – Ausgewählte Ergebnisse der dritten Bundeswaldinventur. Berlin: Bundesministerium für Ernährung und Landwirtschaft.

    Google Scholar 

  • BMU. 2011. Beech forests—UNESCO World Natural Heritage. Berlin: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit.

    Google Scholar 

  • Bouriaud O, Bréda N, Dupouey JL, Granier A. 2005. Is ring width a reliable proxy for stem-biomass increment? A case study in European beech. Can J For Res 35:2920–33.

    Article  Google Scholar 

  • Bréda N, Badeau V. 2008. Forest tree responses to extreme drought and some biotic events: towards a selection according to hazard tolerance? C R Geosci 340:651–62.

    Article  Google Scholar 

  • Bréda N, Huc R, Granier A, Dreyer E. 2006. Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and long-term consequences. Ann For Sci 63:625–44.

    Article  Google Scholar 

  • Briffa KR, Jones PD, Schweingruber FH, Karlén W, Shiyatov SG. 1996. Tree-ring variables as proxy-climate indicators: problems with low-frequency signals. In: Jones PD, Bradley RS, Jouzel J, Eds. Climatic variations and forcing mechanisms of the last 2000 years. Heidelberg: Springer. p 9–41.

    Chapter  Google Scholar 

  • Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov EA. 2001. Low-frequency temperature variations from a northern tree ring density network. J Geophys Res 106:2929–41.

    Article  Google Scholar 

  • Bunn AG, Jansma E, Korpela M, Westfall RD, Baldwin J. 2013. Using simulations and data to evaluate mean sensitivity (ζ) as a useful statistic in dendrochronology. Dendrochronologia 31:250–4.

    Article  Google Scholar 

  • Carsjens C, Nguyen Ngoc Q, Guzy J, Knutzen F, Meier IC, Müller M et al. 2014. Intra-specific variations in expression of stress-related genes in beech progenies are stronger than drought-induced responses. Tree Physiol 34:1348–61.

    Article  CAS  PubMed  Google Scholar 

  • Charru M, Seynave I, Morneau F, Bontemps J-D. 2010. Recent changes in forest productivity: an analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. For Ecol Manag 260:864–74.

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–33.

    Article  CAS  PubMed  Google Scholar 

  • Cook ER. 1985. A time series analysis approach to tree ring standardization. Ph.d. thesis. Tucson: University of Arizona.

  • Cook ER, Briffa KR, Shiyatov S. 1990. Tree-ring standardization and growth-trend estimation. In: Cook ER, Kairiukstis LA, Eds. Methods of dendrochronology: applications in the environmental sciences. Dordrecht: Kluwer. p 104–24.

    Chapter  Google Scholar 

  • Čufar K, Prislan P, de Luis M, Gričar J. 2008. Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees 22:749–58.

    Article  Google Scholar 

  • Di Filippo A, Biondi F, Čufar K, De Luis M, Grabner M, Maugeri M et al. 2007. Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34:1873–92.

    Article  Google Scholar 

  • Dittmar C, Zech W, Elling W. 2003. Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe—a dendroecological study. For Ecol Manag 173:63–78.

    Article  Google Scholar 

  • Dobbertin MK, Grissino-Mayer HD. 2004. The online bibliography of dendrochronology. Dendrochronologia 21:85–90.

    Article  Google Scholar 

  • Dulamsuren C, Hauck M, Kopp G, Ruff M, Leuschner C. 2016. European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees (online) . doi:10.1007/s00468-016-1499-x.

    Google Scholar 

  • Eckstein D, Bauch J. 1969. Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussagesicherheit. Forstwissenschaftliches Centralblatt 88:230–50.

    Article  Google Scholar 

  • Ellenberg H, Leuschner C. 2010. Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Hinsicht. Stuttgart: Ulmer.

    Google Scholar 

  • Garamszegi B, Kern Z. 2014. Climate influence on radial growth of Fagus sylvatica growing near the edge of its distribution in Bükk Mts, Hungary. Dendrobiology 72:93–102.

    Article  Google Scholar 

  • Garcia-Plazaola JI, Becerril JM. 2000. Effects of drought on photoprotective mechanisms in European beech (Fagus sylvatica L.) seedlings from different provenances. Trees 14:485–90.

    Article  Google Scholar 

  • Graham EA, Mulkey SS, Kitajima K, Phillips NG, Wright SJ. 2003. Cloud cover limits net CO2 uptake and growth of a rainforest tree during tropical rainy seasons. Proc Natl Acad Sci USA 100:572–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hacket-Pain AJ, Friend AD, Lageard JGA, Thomas PA. 2015. The influence of masting phenomenon on growth–climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol 35:319–30.

    Article  PubMed  Google Scholar 

  • Hilton GM, Packham JR. 2003. Variation in the masting of common beech (Fagus sylvatica L.) in northern Europe over two centuries (1800–2001). Forestry 76:319–28.

    Article  Google Scholar 

  • Hogg E, Brandt JP, Kochtubajda B. 2005. Factors affecting interannual variation in growth of western Canadian aspen forests during 1951–2000. Can J For Res 35:610–22.

    Article  Google Scholar 

  • IPCC. 2013. The physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

  • Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM et al. 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14:563–78.

    Article  Google Scholar 

  • Jantsch MC, Fischer A, Fischer HS, Winter S. 2013. Shift in plant species composition reveals environmental changes during the last decades: a long-term study in beech (Fagus sylvatica) forests in Bavaria, Germany. Folia Geobot 48:467–91.

    Article  Google Scholar 

  • Jump AS, Hunt JM, Peñuelas J. 2006. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Change Biol 12:2163–74.

    Article  Google Scholar 

  • Kint V, Aertsen W, Campioli M, Vansteenkiste D, Delcloo A, Muys B. 2012. Radial growth change of temperate tree species in response to altered regional climate and air quality in the period 1901–2008. Clim Change 115:343–63.

    Article  CAS  Google Scholar 

  • Köcher P, Horna V, Leuschner C. 2013. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Tree Physiol 33:817–32.

    Article  PubMed  Google Scholar 

  • Lakatos F, Molnár M. 2009. Mass mortality of beech (Fagus sylvatica L.) in south-west Hungary. Acta Silv Lignaria Hung 5:75–82.

    Google Scholar 

  • Lebourgeois F, Bréda N, Ulrich E, Granier A. 2005. Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French permanent plot network (RENECOFOR). Trees 19:385–401.

    Article  Google Scholar 

  • Lemoine D, Granier A, Cochard H. 1999. Mechanism of freeze-induced embolism in Fagus sylvatica L. Trees 13:206–10.

    Google Scholar 

  • Lloret F, Keeling EG, Sala A. 2011. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos 120:1909–20.

    Article  Google Scholar 

  • Meier IC, Leuschner C. 2008. Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech. Tree Physiol 28:297–309.

    Article  PubMed  Google Scholar 

  • Menzel A, Fabian P. 1999. Growing season extended in Europe. Nature 397:659.

    Article  CAS  Google Scholar 

  • Metz J, Seidel D, Schall P, Scheffer D, Schulze ED, Ammer C. 2013. Crown modeling by terrestrial laser scanning as an approach to assess the effect of aboveground intra- and interspecific competition on tree growth. For Ecol Manag 310:275–88.

    Article  Google Scholar 

  • Michelot A, Bréda N, Damesin C, Dufrêne E. 2012. Differing growth responses to climatic variations and soil water deficits of Fagus sylvatica, Quercus petraea and Pinus sylvestris in a temperate forest. For Ecol Manag 265:161–71.

    Article  Google Scholar 

  • Müller-Haubold H, Hertel D, Seidel D, Knutzen F, Leuschner C. 2013. Climate responses of aboveground productivity and allocation in Fagus sylvatica: a transect study in mature forests. Ecosystems 16:1498–516.

    Article  Google Scholar 

  • Müller-Haubold H, Hertel D, Leuschner C. 2015. Climatic drivers of mast fruiting in European beech and resulting C and N allocation shifts. Ecosystems 18:1083–100.

    Article  Google Scholar 

  • Mund M, Kutsch WL, Wirth C, Kahl T, Knohl A, Skomarkova MV, Schulze ED. 2010. The influence of climate and fructification on the inter-annual variability of stem growth and net primary productivity in an old-growth, mixed beech forest. Tree Physiol 30:689–704.

    Article  CAS  PubMed  Google Scholar 

  • Nakawatase JM, Peterson DL. 2006. Spatial variability in forest growth–climate relationships in the Olympic Mountains, Washington. Can J For Res 36:77–91.

    Article  Google Scholar 

  • Övergaard R, Gemmel P, Karlsson M. 2007. Effects of weather conditions on mast year frequency in beech (Fagus sylvatica L.) in Sweden. Forestry 80:555–65.

    Article  Google Scholar 

  • Parry ML. 2007. Climate change 2007: impacts, adaptation and vulnerability: contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

  • Peñuelas J, Hunt JM, Ogaya R, Jump AS. 2008. Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Glob Change Biol 14:1076–88.

    Article  Google Scholar 

  • Piovesan G, di Filippo A, Alessandrini A, Biondi F, Schirone B. 2005. Structure, dynamics and dendroecology of an old-growth Fagus forest in the Apennines. J Veg Sci 16:13–28.

    Google Scholar 

  • Piovesan G, Biondi F, di Fillippo A, Alessandrini A, Maugeri M. 2008. Drought-driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Glob Change Biol 14:1265–81.

    Article  Google Scholar 

  • Piutti E, Cescatti A. 1997. A quantitative analysis of the interactions between climatic response and intraspecific competition in European beech. Can J For Res 27:277–84.

    Article  Google Scholar 

  • Pócs T. 2011. Signs of climate change in the bryoflora of Hungary. In: Tuba Z, Slack NG, Stark LR, Eds. Bryophyte ecology and climate change. Cambridge: Cambridge University Press. p 359–70.

    Google Scholar 

  • Pretzsch H, Biber P, Schütze G, Uhl E, Rötzer T. 2014. Forest stand dynamics in Central Europe has accelerated since 1870. Nat Commun 5:1–10.

    Article  Google Scholar 

  • Prislan P, Gričar J, de Luis M, Smith KT, Čufar K. 2013. Phenological variation in xylem and phloem formation in Fagus from two contrasting sites. Agric For Meteorol 180:142–51.

    Article  Google Scholar 

  • Rebetez M, Dobbertin M. 2004. Climate change may already threaten Scots pine stands in the Swiss Alps. Theor Appl Climatol 79:1–9.

    Article  Google Scholar 

  • Rennenberg H, Seiler W, Matyssek R, Gessler A, Kreuzwieser J. 2004. European beech (Fagus sylvatica L.)—a forest tree without future in the south of Central Europe. Allgemeine Forst und Jagdzeitung 175:210–24.

    Google Scholar 

  • Rigling A, Waldner PO, Forster T, Bräker OU, Pouttu A. 2001. Ecological interpretation of tree-ring width and intraannual density fluctuations in Pinus sylvestris on dry sites in the central Alps and Siberia. Can J For Res 31:18–31.

    Article  Google Scholar 

  • Rose L, Leuschner C, Köckemann B, Buschmann H. 2009. Are marginal beech (Fagus sylvatica L.) provenances a source for drought tolerant ecotypes? Eur J For Res 128:335–43.

    Article  Google Scholar 

  • Rozas V, Camarero JJ, Sangüesa-Barreda G, Souto M, García-González I. 2015. Summer drought and ENSO-related cloudiness distinctly drive Fagus sylvatica growth near the species rear-edge in northern Spain. Agric For Meteorol 201:153–64.

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C. 2004. The role of increasing temperature variability in European summer heatwaves. Nature 427:332–6.

    Article  PubMed  Google Scholar 

  • Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M. 2011. Drought matters—declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. For Ecol Manag 262:947–61.

    Article  Google Scholar 

  • Schönwiese CD, Grieser J, Trömel S. 2003. Secular change of extreme monthly precipitation in Europe. Theor Appl Climatol 75:245–50.

    Article  Google Scholar 

  • Schweingruber FH. 1996. Tree rings and environment: dendroecology. Bern: Paul Haupt.

    Google Scholar 

  • Spiecker H. 1999. Overview of recent growth trends in European forests. Water Air Soil Pollut 116:33–46.

    Article  CAS  Google Scholar 

  • Tarp P, Helles F, Holten-Andersen P, Larsen JB, Strange N. 2000. Modelling near-natural silvicultural regimes for beech—an economic sensitivity analysis. For Ecol Manag 130:187–98.

    Article  Google Scholar 

  • Van der Werf GW, Sass-Klaassen UGW, Mohren GMJ. 2007. The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–12.

    Article  Google Scholar 

  • Van Herk CV, Aptroot A, van Dobben HF. 2002. Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34:141–54.

    Article  Google Scholar 

  • Vavrčík H, Gryc V, Menšík L, Baar J. 2013. Xylem formation in Fagus sylvatica during one growing season. Dendrobiology 69:69–75.

    Article  Google Scholar 

  • Weber P, Bugmann H, Rigling A. 2007. Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. J Veg Sci 18:777–92.

    Article  Google Scholar 

  • Weber P, Bugmann H, Fonti P, Rigling A. 2008. Using a retrospective dynamic competition index to reconstruct forest succession. For Ecol Manag 254:96–106.

    Article  Google Scholar 

  • Weber P, Bugmann H, Pluess AR, Walthert L, Rigling A. 2013. Drought response and changing mean sensitivity of European beech close to the dry distribution limit. Trees 27:171–81.

    Article  Google Scholar 

  • Wigley TML, Briffa KR, Jones PD. 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23:201–13.

    Article  Google Scholar 

  • Zang C, Hartl-Meier C, Dittmar C, Rothe A, Menzel A. 2014. Patterns of drought tolerance in major European temperate forest trees: climatic drivers and levels of variability. Glob Change Biol 20:3767–79.

    Article  Google Scholar 

  • Zimmermann J, Hauck M, Dulamsuren C, Leuschner C. 2015. Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 18:560–72.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

We are grateful to H.-H. Leuschner, H. Müller-Haubold, and J. Zimmermann for valuable comments on the data. This work was supported by grants provided by the Ministry for Science and Culture of Lower Saxony (Germany) in the context of the program “Klimafolgenforschung in Niedersachsen” (KLIFF; climate response research in Lower Saxony) (Grant #MWK 11-76102-51, subproject #FT54).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Leuschner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Author contributions

CL, ICM, and CD conceived and designed the research project. FK performed research. FK, CD, and ICM analyzed the data. All authors wrote the manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 589 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knutzen, F., Dulamsuren, C., Meier, I.C. et al. Recent Climate Warming-Related Growth Decline Impairs European Beech in the Center of Its Distribution Range. Ecosystems 20, 1494–1511 (2017). https://doi.org/10.1007/s10021-017-0128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-017-0128-x

Keywords

Navigation