Skip to main content
Log in

Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe

  • Original Paper
  • Published:
Trees Aims and scope Submit manuscript

Abstract

Long-term variation in tree-ring widths (1873–2006) and intra-annual dynamics of cambial activity and tree-ring formation in 2006 were studied in mature beech (Fagus sylvatica L.) trees at a typical forest site near Ljubljana (46°N, 14°40′E, 400 m a.s.l.) and related to leaf phenology and climate data. Tree-ring widths were negatively affected by minimum March and maximum August temperatures and favoured by May and July precipitation. Precipitation of the previous August and temperature of the previous November also had a positive effect. Leaf unfolding was affected by March and April temperatures, occurring later if they were low. Leaf yellowing was positively affected by minimum July temperatures and negatively by September precipitation. In 2006, leaf unfolding occurred on 16 April and was immediately followed by reactivation of cambium at breast height of the trees. One week later, the cambium obtained its maximum width (around 11 cell layers) and the rate of division increased until the end of May/beginning of June. By the end of June, 75% of the tree-ring was formed. Cambial cell divisions stopped from the end of July to mid-August. The average time of cambial activity was 100 days. Leaf yellowing occurred at the end of October, i.e. nearly 2 months after the cessation of cambial cell division. We discuss the usefulness of a combination of long-term (tree-ring width and phenology) and short-term (wood formation at a cellular level) data to understand better the environmental signals registered by a tree during growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Antonova GF, Stasova VV (1993) Effects of environmental factors on wood formation in Scots pine stems. Trees 7(4):214–219

    Article  Google Scholar 

  • Baillie MGL, Pilcher JR (1973) A simple cross-dating program for tree-ring research. Tree Ring Bull 33:7–14

    Google Scholar 

  • Bergant K, Kajfež-Bogataj L (2005) N-PLS regression as empirical downscaling tool in climate change studies. Theor Appl Climatol 81:11–23

    Article  Google Scholar 

  • Biondi F (1992) Development of a tree-ring network for the Italian Peninsula. Tree Ring Bull 52:15–29

    Google Scholar 

  • Biondi F, Waikul K (2004) DENDROCLIM2002: a C++ program for statistical calibration of climate signals in tree-ring chronologies. Comput Geosci 30:303–311

    Article  Google Scholar 

  • Bončina A, Diaci J, Gašperšič F (2003) Long-term changes in tree species composition in the Dinaric mountain forests of Slovenia. For Chron 79:227–232

    Google Scholar 

  • Bosshard HH (1974) Holzkunde, vol 2. Birkhäuser, Basel, pp 34–71

    Google Scholar 

  • Bouriaud O, Breda N, Le Moguedec G, Nepveu G (2004) Modelling variability of wood density in beech as affected by ring age, radial growth and climate. Trees 18:264–276. doi:10.1007/s00468-003-0303-x

    Google Scholar 

  • Brus R (2005) Dendrologija za gozdarje (Dendrology for foresters). Biotechnical Faculty, Department of Forestry and Renewable Resources, Ljubljana

  • Cook ER, Peters K (1997) Calculating unbiased tree-ring indices for the study of climatic and environmental change. Holocene 7:361–370

    Article  Google Scholar 

  • Črepinšek Z, Zrnec C (2005) Petinpetdeset let fenoloških opazovanj v Sloveniji, 1951–2005 (Fifty-five years of phenological observations in Slovenia, 1951–2005). Acta Agric Slov 85:283–297

    Google Scholar 

  • Črepinšek Z, Kajfež-Bogataj L, Bergant K (2006) Modelling of weather variability effect on phytophenology. Ecol Modell 194:256–265

    Article  Google Scholar 

  • Deslauriers A, Morin H, Urbinati C, Carrer M (2003a) Daily weather response of balsam fir (Abies balsamea (L.) Mill.) stem radius increment from denrometer analysis in the boreal forest of Quebec (Canada). Trees 17:477–484. doi:10.1007/s00468-003-0260-4

    Google Scholar 

  • Deslauriers A, Morin H, Begin Y (2003b) Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can J For Res 33:190–200

    Article  Google Scholar 

  • De Luis M, Gričar J, Čufar K, Raventós J (2007) Seasonal dynamics of wood formation in Pinus halepensis from dry and semi-arid ecosystems in Spain. IAWA J 28:389–404

    Google Scholar 

  • Diaci J (2007) Prilagajanje gojenja gozdov podnebnim spremembam (Adapting silviculture to climate change). In: Jurc M (ed) Podnebne spremembe: vpliv na gozd in gozdarstvo (Climate change: impact on forest and forestry). Studia Forestalia Slovenica 130, Ljubljana, pp 117–132

  • Di Filippo A, Biondi F, Čufar K, De Luis M, Grabner M, Maugeri M, Presutti Saba E, Schirone B, Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34:1873–1892. doi:10.1111/j.1365-2699.2007.01747.x

    Article  Google Scholar 

  • Dittmar C, Elling W (2006) Phenological phases of common beech (Fagus sylvatica L.) and their dependence on region and altitude in Southern Germany. Eur J Forest Res 125:181–188. doi:10.1007/s10342-005-0099-x

    Article  Google Scholar 

  • Dittmar C, Zech W, Elling W (2003) Growth variations of Common beech (Fagus sylvatica L.) under different climatic and environmental conditions in Europe-a dendroecological study. For Ecol Manage 173:63–78

    Article  Google Scholar 

  • Eckstein D (2004) Change in past environments—secrets of the tree hydrosystem. New Phytol 163:1–4. doi:10.1111/j.1469-8137.2004.01117.x

    Article  Google Scholar 

  • Eckstein D, Richter K, Aniol RW, Quiehl G (1984) Dendroklimatologische Untersuchungen zum Buchensterben im südwestlichen Vogelsberg. Forstwiss Cent 103:274–289

    Article  Google Scholar 

  • Eschrich W (1995) Funktionelle Pflanzenanatomie. Springer, Berlin

    Google Scholar 

  • Fonti P, Solomonoff N, García-González I (2007) Earlywood vessels of Castanea sativa record temperature before their formation. New Phytol 173:562–570. doi:10.1111/j.1469-8137.2006.01945.x

    Article  PubMed  Google Scholar 

  • Frankenstein C, Eckstein D, Schmitt U (2005) The onset of cambium activity—a matter of agreement? Dendrochronologia 23:57–68. doi:10.1016/j.dendro.2005.07.007

    Article  Google Scholar 

  • Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2007) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21:1–11. doi:10.1007/s00468-006-0107-x

    Article  Google Scholar 

  • Gindl W, Grabner M, Wimmer R (2000) The influence of temperature on latewood lignin content in treeline Norway spruce compared with maximum density and ring width. Trees 14:409–414

    Article  Google Scholar 

  • Gričar J (2007) Xylo- and phloemogenesis in silver fir (Abies alba Mill.) and Norway spruce (Picea abies (L.) Karst.). Slovenian Forestry Institute, Ljubljana

    Google Scholar 

  • Gričar J, Čufar K, Oven P, Schmitt U (2005) Differentiation of terminal latewood tracheids in silver fir during autumn. Ann Bot 95:959–965. doi:10.1093/aob/mci112

    Article  PubMed  Google Scholar 

  • Gričar J, Zupančič M, Čufar K, Oven P (2007) Wood formation in Norway spruce studied by pinning technique and intact tissue sampling method. Wood Res Slov 52:1–9

    Google Scholar 

  • Guiot J (1991) The bootstrapped response function. Tree Ring Bull 51:39–41

    Google Scholar 

  • Gutierrez E (1988) Dendroecological study of Fagus silvatica L. in the Montseny Mountains (Spain). Acta Oecol Oecol Plant 9:301–309

    Google Scholar 

  • Holmes RL (1994) Dendrochronology program library user’s manual. Laboratory of Tree-Ring Research. University of Arizona, Tucson

  • Horacek P, Slezingerova J, Gandelova L (1999) Effects of environment on the xylogenesis of Norway spruce (Picea abies [L.] Karst.). In: Wimmer R, Vetter RE (eds) Tree-ring analysis. Biological, methodological and environmental aspects. CAB International, Oxford, pp 33–54

    Google Scholar 

  • Jump AS, Peñuelas J (2006) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020. doi:10.1111/j.1461-0248.2005.00796.x

    Article  Google Scholar 

  • Lebourgeois F, Breda N, Ulrich E, Granier A (2005) Climate-tree-growth relationship of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees 19:385–401. doi:10.1007/s00468-004-0397-9

    Article  Google Scholar 

  • Marinček L (1987) Bukovi gozdovi na Slovenskem (Beech forests in Slovenia). Delavska enotnost, Ljubljana

    Google Scholar 

  • Marion L, Gričar J, Oven P (2007) Wood formation in urban Norway maple trees studied by the micro-coring method. Dendrochronologia 25:97–102. doi:10.1016/j.dendro.2007.05.001

    Article  Google Scholar 

  • Mayer H (1984) Waldbau auf soziologisch-ökologischer Grundlage, 3 Aufl., Fischer, Stuttgart-New York

  • Panshin AJ, De Zeeuw C (1980) Textbook of wood technology, Fourth edn. McGraw-Hill, New York

    Google Scholar 

  • Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Change Biol 9:131–140

    Article  Google Scholar 

  • Piovesan G, Biondi F, Bernabei M, Di Filippo A, Schirone B (2005) Spatial and altitudinal bioclimatic zones of the Italian peninsula identified from a beech (Fagus sylvatica L.) tree-ring network. Acta Oecol 27:197–210. doi:10.1016/j.actao.2005.01.001

    Article  Google Scholar 

  • Rossi S, Deslauriers A, Morin H (2003) Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21:33–39

    Article  Google Scholar 

  • Rossi S, Anfodillo T, Menardi R (2006a) Trephor: a new tool for sampling microcores from tree stems. IAWA J 27:89–97

    Google Scholar 

  • Rossi S, Deslauriers A, Anfodillo T, Morin H, Saracino A, Motta R, Borghetti M (2006b) Conifers in cold environments synchronize maximum growth rate of tree-ring formation with day length. New Phytol 170:301–310. doi:10.1111/j.1469-8137.2006.01660.x

    Article  PubMed  Google Scholar 

  • Rozas V (2001) Detecting the impact of climate and disturbances on tree-rings of Fagus sylvatica L. and Quercus robur L. in a lowland forest in Cantabria, Northern Spain. Ann For Sci 58:237–251

    Article  Google Scholar 

  • Sass U (1993) Die Gefäße der Buche als ökologische Variable—Bildanalytische Erfassung, Dendroklimatologische Prüfung, ökologische Bewertung. Dissertation, Universität Hamburg

  • Sass U, Eckstein D (1995) The variability of vessel size in beech (Fagus sylvatica L.) and its ecophysiological interpretation. Trees 9:247–252

    Article  Google Scholar 

  • Schmitt U, Möller R, Eckstein D (2000) Seasonal wood formation dynamics of beech (Fagus sylvatica L.) and black locust (Robinia pseudoacacia L.) as determined by the “pinning” technique. J Appl Bot 74:10–16

    Google Scholar 

  • Schmitt U, Jalkanen R, Eckstein D (2004) Cambium dynamics of Pinus sylvestris and Betula spp. in the northern boreal forest in Finland. Silva Fenn 38:167–178

    Google Scholar 

  • Skomarkova MV, Vaganov EA, Mund M, Knohl A, Linke P, Boerner A, Schulze ED (2006) Inter-annual and seasonal variability of radial growth, wood density and carbon isotope ratios in tree rings of beech (Fagus sylvatica) growing in Germany and Italy. Trees 20:571–586. doi:10.1007/s00468-006-0072-4

    Article  Google Scholar 

  • Suzuki M, Kiyotsugu Y, Suzuki H (1996) Phenological comparison of the onset of vessel formation between ring-porous and diffuse-porous deciduoud trees in a Japanese temperate forest. IAWA J 17:431–444

    Google Scholar 

  • Tarp P, Helles F, Holten-Andersen P, Larsen JB, Strange N (2000) Modelling near-natural silvicultural regimes for beech—an economic sensitivity analysis. For Ecol Manage 130:187–198

    Article  Google Scholar 

  • Werf van der GW, Sass-Klaassen U, Mohren GMJ (2007) The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25:103–112

    Article  Google Scholar 

  • Whitmore FW, Zahner R (1966) Development of the xylem ring in stems of young red pine trees. For Sci 12:198–210

    Google Scholar 

  • Z’Graggen S (1992) Dendrohistometrisch- klimatologische Untersuchung an Buchen (Fagus sylvatica L.). Dissertation, University of Basel

  • Zeide B (1993) Analysis of growth equations. For Sci 39:591–616

    Google Scholar 

  • Zeide B (2004) Intrinstic units in growth modelling. Ecol Modell 175:249–259

    Article  Google Scholar 

Download references

Acknowledgments

Climatic and phenological data originated from the Environmental Agency of the Republic of Slovenia within the Ministry of the Environment and Spatial Planning. We thank Prof. Dr. Lučka Kajfež-Bogataj for enabling us to use them. We thank Marko Beber, Martin Zupančič and Luka Krže for their work in the field and laboratory. The work was funded by the Ministry of Higher Education, Science and Technology of the Republic of Slovenia, Research Program “Lesarstvo”, and by the Spanish Ministry of Education and Science, project CGL2005-04270.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarina Čufar.

Additional information

Communicated by H.G. Jones.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Čufar, K., Prislan, P., de Luis, M. et al. Tree-ring variation, wood formation and phenology of beech (Fagus sylvatica) from a representative site in Slovenia, SE Central Europe. Trees 22, 749–758 (2008). https://doi.org/10.1007/s00468-008-0235-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00468-008-0235-6

Keywords

Navigation