Skip to main content
Log in

Strategy for chemically riveting catenated nitrogen chains

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Catenated nitrogen chains (CNCs) attract considerable attention because of their structural novelty, their high energy, and their potential as precursors for all-nitrogen materials. However, pure CNCs are unstable under ambient conditions, limiting their on-site or practical applications. Chemical riveting of a CNC involves the maintenance of the structure of a CNC and placing the CNC in a special chemical structure as a moiety of an entire molecule to stabilize it. Other structures, except from the CNC, are named rivets. In this study, the molecular geometry, bond order, natural bond orbital charge, and frontier orbital among the pure CNCs (Nx), Nx, Nx+, and NxHy (x = 2–11) and CNCs riveted and implemented experimentally in several former studies are systematically analyzed and compared. The lone-pair repulsion between two neighboring N atoms is one of the primary factors for the low molecular stability of the pure CNCs and their derivatives. The riveted CNCs with rings are usually more stable than those with open chains. Moreover, the standard deviation of the bond orders or the bond lengths can be employed as an indicator for molecular stability, i.e., a lower standard deviation suggests higher molecular stability. Hence, electron-donating groups, groups with electronegativity within those of H and N atoms, as well as atoms or groups with empty orbitals are proposed to trap the lone pairs of CNCs as rivets to stabilize the CNCs. This strategy is expected to facilitate the creation of stable CNC-contained compounds with high structural novelty or high energy contents.

A strategy is proposed for chemically riveting instable CNCs to transform them into more stable ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dong H (2004) The development and countermeasure of high energy density materials. Chin J Energ Mater 12(Z1):1–12. http://www.energetic-materials.org.cn/hncl/ch/reader/view_abstract.aspx?doi=10.11943/j.issn.1006-9941.2015.04.014. Accessed 31 Jan 2018

    CAS  Google Scholar 

  2. Zhang CY (2018) On the energy & safety contradiction of energetic materials and the strategy for developing low-sensitive high-energetic materials. Chin J Energ Mater 26:2–10. http://www.energetic-materials.org.cn/hncl/ch/reader/view_abstract.aspx?doi=10.11943/j.issn.1006-9941.2018.01.001. Accessed 18 Jan 2018

    Google Scholar 

  3. Fried LE, Manaa MR, Pagoria PF, Simpson RL (2001) Design and synthesis of energetic materials. Annu Rev Mater Res 31:291–321. https://doi.org/10.1146/annurev.matsci.31.1.291

    Article  CAS  Google Scholar 

  4. Li Y, Li S, Qi C, Zhang H, Zhu M, Pang S (2011) Synthesis and performance of a novel poly-nitrogen compound 1,1-azobis-1,2,3-triazole. Acta Chim Sin 69:2159–2165. http://sioc-journal.cn/Jwk_hxxb/CN/Y2011/V69/I18/2159. Accessed 24 Sept 2013

    CAS  Google Scholar 

  5. Klapötke TM, Piercey DG, Stierstorfer J (2013) The 1,3-diamino-1,2,3-triazolium cation: a highly energetic moiety. Eur J Inorg Chem 9:1509–1517. https://doi.org/10.1002/ejic.201201237

    Article  CAS  Google Scholar 

  6. Göbel M, Karaghiosoff K, Klapötke TM, Piercey DG, Stierstorfer J (2010) Nitrotetrazolate-2N-oxides and the strategy of n-oxide introduction. J Am Chem Soc 132:17216–17226. https://doi.org/10.1021/ja106892a

    Article  CAS  PubMed  Google Scholar 

  7. Klapötke TM, Piercey DG, Stierstorfer J (2012) The 1,4,5-triaminotetrazolium cation (CN7H6 +): a highly nitrogen-rich moiety. Eur J Inorg Chem 34:5694–5700. https://doi.org/10.1002/ejic.201200964

    Article  CAS  Google Scholar 

  8. Klapötke TM, Petermayer C, Piercey DG, Stierstorfer J (2012) 1,3-Bis(nitroimido)-1,2,3-triazolate anion, the N-nitroimide moiety, and the strategy of alternating positive and negative charges in the design of energetic materials. J Am Chem Soc 134:20827–20836. https://doi.org/10.1021/ja310384y

    Article  CAS  PubMed  Google Scholar 

  9. Tang Y, Yang H, Wu B, Ju X, Lu C, Cheng G (2013) Synthesis and characterization of a stable, catenated N11 energetic salt. Angew Chem Int Ed 52:4875–4877. https://doi.org/10.1002/anie.201300117

    Article  CAS  Google Scholar 

  10. Li YC, Qi C, Li SH, Zhang HJ, Sun CH, Yu YZ et al (2010) 1,1’-Azobis-1,2,3-triazole: a high-nitrogen compound with stable N8 structure and photochromism. J Am Chem Soc 132:12172–12173. https://doi.org/10.1021/ja103525v

    Article  CAS  PubMed  Google Scholar 

  11. Klapötke TM, Piercey DG, Stierstorfer J (2012) Amination of energetic anions: high-performing energetic materials. Dalton Trans 41:9451–9459. https://doi.org/10.1039/C2DT30684K

    Article  PubMed  Google Scholar 

  12. Klapötke TM, Piercey DG (2011) 1,1’-Azobis(tetrazole): a highly energetic nitrogen-rich compound with a N10 chain. Inorg Chem 50:2732–2734. https://doi.org/10.1021/ic200071q

    Article  CAS  PubMed  Google Scholar 

  13. Tang Y, Yang H, Shen J, Wu B, Ju X, Lu C et al (2012) Synthesis and characterization of 1,1’-azobis(5-methyltetrazole). New J Chem 36:2447–2450. https://doi.org/10.1039/C2NJ40731K

    Article  CAS  Google Scholar 

  14. Li SH, Pang SP, Li XT, Yu YZ, Zhao XQ (2007) Synthesis of new tetrazene(N–NN–N)-linked bi(1,2,4-triazole). Chin Chem Lett 18:1176–1178. https://doi.org/10.1016/j.cclet.2007.08.018

    Article  CAS  Google Scholar 

  15. Li S, Shi H, Sun C, Li X, Pang S, Yu Y et al (2009) Synthesis and crystal structure of nitrogen-rich compound: 2,5,2’-triazido-1,1’-azo-1,3,4-triazole. J Chem Crystallogr 39:13–16. https://doi.org/10.1007/s10870-008-9411-1

    Article  CAS  Google Scholar 

  16. Qi C, Li S, Li Y, Wang Y, Chen X, Pang S (2011) A novel stable high-nitrogen energetic material: 4,4’-azobis(1,2,4-triazole). J Mater Chem 21:3221–3225. https://doi.org/10.1039/C0JM02970J

    Article  CAS  Google Scholar 

  17. Yu Q, Wang Z, Wu B, Yang H, Ju X, Lu C, Cheng G et al (2015) A Study of N-trinitroethyl-substituted aminofurazans: high detonation performance energetic compounds with good oxygen balance. J Mater Chem A 3:8156–8164. https://doi.org/10.1039/C4TA06974A

    Article  CAS  Google Scholar 

  18. Zhang QH, Shreeve JM (2013) Growing catenated nitrogen atom chains. Angew Chem Int Ed 52:8792–8794. https://doi.org/10.1002/anie.201303297

    Article  CAS  Google Scholar 

  19. Curtius T (1890) Ueber Stickstoffwasserstoffsäure (Azoimid) N3H. Eur J Inorg Chem 23:3023–3033. https://doi.org/10.1002/cber.189002302232

    Article  Google Scholar 

  20. Xu Y, Wang Q, Shen C, Lin Q, Wang P, Lu M (2017) A series of energetic metal pentazolate hydrates. Nature 549:78–81. https://doi.org/10.1038/nature23662

    Article  CAS  PubMed  Google Scholar 

  21. Zhang C, Sun C, Hu B, Yu C, Lu M (2017) Synthesis and characterization of the pentazolate anion cyclo-N5 in (N5)6(H3O)3(NH4)4Cl. Science 355:374–376. https://doi.org/10.1126/science.aah3840

    Article  CAS  PubMed  Google Scholar 

  22. Christe KO, Wilson WW, Sheehy JA, Boatz JA (1999) N5 +: a novel homoleptic polynitrogen ion as a high energy density material. Angew Chem Int Ed 38:2004–2009. https://doi.org/10.1002/(SICI)1521-3773(19990712)38:13/14<2004::AID-ANIE2004>3.0.CO;2-7

    Article  CAS  Google Scholar 

  23. Eremet MI, Gavriliuk AG, Trojan IA, Dzivenko DA, Boehler R (2004) Single-bonded cubic form of nitrogen. Nat Mater 3:558–563. https://doi.org/10.1038/nmat1146

    Article  CAS  Google Scholar 

  24. Eremet MI, Hemley RJ, Mao HK, Gregoryanz E (2001) Semiconducting non-molecular nitrogen up to 240 GPa and its low-pressure stability. Nature 411:170–174. https://doi.org/10.1038/35075531

    Article  CAS  Google Scholar 

  25. Goncharov AF, Gregoryanz E, Mao HK, Liu Z, Hemley RJ (2000) Optical evidence for a nonmolecular phase of nitrogen above 150 GPa. Phys Rev Lett 85:1262–1265. https://doi.org/10.1103/PhysRevLett.85.1262

    Article  CAS  PubMed  Google Scholar 

  26. Ma Y, Oganov AR, Li Z, Xie Y, Kotakoski J (2009) Novel high pressure structures of polymeric nitrogen. Phys Rev Lett 102:065501. https://doi.org/10.1103/PhysRevLett.102.065501

    Article  CAS  PubMed  Google Scholar 

  27. Vij A, Pavlovich JG, Wilson WW, Vij V, Christe KO (2002) Experimental detection of the pentaazacyclopentadienide (pentazolate) anion, cyclo-N5 . Angew Chem Int Ed 341:3051–3054. https://doi.org/10.1002/1521-3773(20020816)41:16<3051:AID-ANIE3051>3.0.CO;2-T

    Article  Google Scholar 

  28. Samartzis PC, Lin JJ, Ching TT, Chaudhuri C, Lee YT, Lee SH et al (2005) Two photoionization thresholds of N3 produced by ClN3 photodissociation at 248 nm: further evidence for cyclic N3. J Chem Phys 123:051101. https://doi.org/10.1063/1.1993590

    Article  CAS  PubMed  Google Scholar 

  29. Cacace F, de Petris G, Troiani A (2002) Experimental detection of tetranitrogen. Science 295:480–481. https://doi.org/10.1126/science.1067681

    Article  CAS  PubMed  Google Scholar 

  30. Helen HH, James KO, Richard J, Van B, Svetlana BR, Mark JK (1996) Evidence for inelastic processes for N3 + and N4 + from ion energy distributions in He/N2 radio frequency glow discharges. J Appl Phys 79:93–98. https://doi.org/10.1063/1.360795

    Article  Google Scholar 

  31. Politzer P, Murray JS (2015) Impact sensitivity and the maximum heat of detonation. J Mol Model 21:262. https://doi.org/10.1007/s00894-015-2793-z

    Article  PubMed  Google Scholar 

  32. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propell Explos Pyrot 41:414–425. https://doi.org/10.1002/prep.201500349

    Article  CAS  Google Scholar 

  33. Politzer P, Murray JS (2017) Computational analysis of polyazoles and their N-oxides. Struct Chem 28:1045–1063. https://doi.org/10.1007/s11224-016-0909-4

    Article  CAS  Google Scholar 

  34. Moller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622. https://doi.org/10.1103/PhysRev.46.618

    Article  CAS  Google Scholar 

  35. Dunning Jr T (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  36. Li Q, Liu Y (2002) Structures and stability of N11 cluster. Chem Phys Lett 353:204–212. https://doi.org/10.1016/S0009-2614(02)00018-0

    Article  Google Scholar 

  37. Qi C, Zhang R, Pang S (2013) Thermal stability of the N10 compound with extended nitrogen chain. RSC Adv 3:17741–17748. https://doi.org/10.1039/C3RA42439A

    Article  CAS  Google Scholar 

  38. Yin P, Li Q (2004) Structures and stability of N13 + and N13 clusters. J Mol Model 10:13–18. https://doi.org/10.1007/s00894-003-0160-y

    Article  CAS  PubMed  Google Scholar 

  39. Thomas J, Fairman K, Strout DL (2010) Structure and decomposition energies of high-energy open-chain carbon−nitrogen compounds NxC2. J Phys Chem A 114:1144–1146. https://doi.org/10.1021/jp909489r

    Article  CAS  PubMed  Google Scholar 

  40. Casey K, Thomas J, Fairman K, Strout DL (2008) Stability and dissociation energies of open-chain N4C2. J Chem Theory Comput 4:1423–1427. https://doi.org/10.1021/ct8001943

    Article  CAS  PubMed  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB et al (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford

    Google Scholar 

  42. Weinhold F, Landis CR (2005) Valency and bonding: a natural bond orbital donor-acceptor perspective. Cambridge University Press, New York, p 2005

    Google Scholar 

  43. Evers J, Göbel M, Krumm B, Martin F, Medvedyev S, Oehlinger G et al (2011) Molecular structure of hydrazoic acid with hydrogen-bonded tetramers in nearly planar layers. J Am Chem Soc 133:12100–12105. https://doi.org/10.1021/ja2027053

    Article  CAS  PubMed  Google Scholar 

  44. Dixon DA, Feller D, Christe KO, Wilson WW, Vij A, Vij V et al (2004) Enthalpies of formation of gas-phase N3, N3 -, N5 +, and N5 - from ab initio molecular orbital theory, stability predictions for N5 +N3 - and N5 +N5 -, and experimental evidence for the instability of N5 +N3 -. J Am Chem Soc 126:834–843. https://doi.org/10.1021/ja0303182

    Article  CAS  Google Scholar 

  45. Nguyen MM (2003) Polynitrogen compounds: 1. Structure and stability of N4 and N5 systems. Coord Chem Rev 244:93–113. https://doi.org/10.1016/S0010-8545(03)00101-2

    Article  CAS  Google Scholar 

  46. Bittererová M, Brinck T (2000) Theoretical study of the triplet N4 potential energy surface. J Phys Chem A 104:11999–12005. https://doi.org/10.1021/jp002651n

    Article  CAS  Google Scholar 

  47. Bazanov B, Geiger U, Carmieli R, Grinstein D, Welner S, Haas Y (2016) Detection of cyclo-N5 - in THF solution. Angew Chem Int Ed 55:13233–13235. https://doi.org/10.1002/anie.201605400

    Article  CAS  Google Scholar 

  48. Hirshberg B, Gerber RB (2012) Decomposition mechanisms and dynamics of N6: bond orders and partial charges along classical trajectories. Chem Phys Lett 531:46–51. https://doi.org/10.1016/j.cplett.2012.01.088

    Article  CAS  Google Scholar 

  49. Greschner MJ, Zhang M, Majumdar A, Liu H, Peng F, Tse JS et al (2016) A new allotrope of nitrogen as high-energy density material. J Phys Chem A 120:2920–2925. https://doi.org/10.1021/acs.jpca.6b01655

    Article  CAS  PubMed  Google Scholar 

  50. Li QS, Hu XG, Xu WG (1998) Structure and stability of N7 cluster. Chem Phys Lett 287:94–99. https://doi.org/10.1016/S0009-2614(98)00126-2

    Article  CAS  Google Scholar 

  51. Wang, X., Ren, Y., Shuai,M., Wong, N., Li, W., Tian, A. (2001). Structure and stability of new N7 isomers. J Mol Struct THEOCHEM, 538, 145-156. https://doi.org/10.1016/S0166-1280(00)00701-6

    Article  CAS  Google Scholar 

  52. Wang X, Tian A, Wong N, Law C, Li W (2001) A Gaussian-3 investigation of N7 isomers. Chem Phys Lett 338:367–374. https://doi.org/10.1016/S0009-2614(01)00279-2

    Article  CAS  Google Scholar 

  53. Law C, Li W, Wang X, Tian A, Wong NB (2002) A Gaussian-3 study of N7 + and N7 isomers. J Mol Struct THEOCHEM 617:121–131. https://doi.org/10.1016/S0166-1280(02)00411-6

    Article  CAS  Google Scholar 

  54. Liu YD, Zhao JF, Li QS (2002) Structures and stability of N7 + and N7 clusters. Theor Chem Accounts 107:140–146. https://doi.org/10.1007/s00214-001-0311-0

    Article  CAS  Google Scholar 

  55. Hirshberg B, Gerber RB, Krylov AI (2014) Calculations predict a stable molecular crystal of N8. Nat Chem 6:52–56. https://doi.org/10.1038/nchem.1818

    Article  CAS  PubMed  Google Scholar 

  56. Chung G, Schmidt MW, Gordon MS (2000) An ab initio study of potential energy surfaces for N8 isomers. J Phys Chem A 104:5647–5650. https://doi.org/10.1021/jp0004361

    Article  CAS  Google Scholar 

  57. Wu Z, Benchafia EM, Iqbal Z, Wang X (2014) N8-polynitrogen stabilized on multi-wall carbon nanotubes for oxygen-reduction reactions at ambient conditions. Angew Chem Int Ed 53:12555–12559. https://doi.org/10.1002/anie.201403060

    Article  CAS  Google Scholar 

  58. Li QS, Wang LJ (2001) Theoretical studies on the potential energy surfaces of N8 clusters. J Phys Chem A 105:1979–1982. https://doi.org/10.1021/jp003086r

    Article  CAS  Google Scholar 

  59. Fau S, Bartlett RJ Possible products of the end-on addition of N3 - to N5 + and their stability. J Phys Chem A 105(2001):4096–4106. https://doi.org/10.1021/jp003970h

    Article  CAS  Google Scholar 

  60. Li QS, Wang LJ (2001) A quantum chemical theoretical study of decomposition pathways of N9 (C2v) and N9 + (C2v) clusters. J Phys Chem A 105:1203–1207. https://doi.org/10.1021/jp003461f

    Article  CAS  Google Scholar 

  61. Thompson MD, Bledson TM, Strout DL (2002) Dissociation barriers for odd-numbered acyclic nitrogen molecules N9 and N11. J Phys Chem A 106:6880–6882. https://doi.org/10.1021/jp0208182

    Article  CAS  Google Scholar 

  62. Wang LJ, Mezey PG, Zgierski MZ (2004) Stability and the structures of nitrogen clusters N10. Chem Phys Lett 391:338–343. https://doi.org/10.1016/j.cplett.2004.04.114

    Article  CAS  Google Scholar 

  63. Sanderson RT (1976) Chemical bonds and bond energy. Academic Press, New York, p 1976

    Google Scholar 

  64. Sanderson RT (1988) Principles of electronegativity Part I. General nature. J Chem Educ 65:112–118. https://doi.org/10.1021/ed065p112

    Article  CAS  Google Scholar 

  65. Sanderson RT (1988) Principles of electronegativity Part II. Applications. J Chem Educ 65:227–231. https://doi.org/10.1021/ed065p227

    Article  CAS  Google Scholar 

  66. Christe KO, Haiges R, Wilson WW, Boatz JA (2010) Synthesis and properties of N7O+. Inorg Chem 49:1245–1251. https://doi.org/10.1021/ic9022213

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study received financial support from the National Natural Science Foundation of China (No. 11602239), the Science and Technology Fund of CAEP (2015B0302052), and Horizontal project (18zh005604, 18zh0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianfeng Wei.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information SI.

It contains bond lengths, bond orders and NBO charges of related CNC species, and molecular orbitals of some CNCs and their relatives. (DOC 2092 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Wang, R. & Liu, M. Strategy for chemically riveting catenated nitrogen chains. J Mol Model 25, 345 (2019). https://doi.org/10.1007/s00894-019-4228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4228-8

Keywords

Navigation