Skip to main content
Log in

Further understanding of the Ru-centered [2+2] cycloreversion/cycloaddition involved into the interconversion of ruthenacyclobutane using the Grubbs catalysts from a reaction force analysis

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The chemical reactivity of the first- and second-generation Grubbs catalysts has always been a significant issue in olefin metathesis. In the present work, we study the [2+2] cycloreversion/cycloaddition and the alkylidene rotation involved into the interconversion of the ruthenacyclobutane intermediate, through the reaction force and reaction force constant analysis. It has been found that the structural contribution controls the barrier energy in the interconversion of ruthenacyclobutane via [2+2] cycloreversion/cycloaddition, which is slightly lower in the second generation of Grubbs catalysts while its electronic contribution is slightly higher, which unveils a major rigidity and donor/acceptor properties of the NHC. This finding explains a greater structural contribution in the rate constant. Moreover, on the basis of the reaction force constant, the process can be classified as “two-stage”-concerted reactions, noting a more asynchronous process when the first generation is used as a catalyst.

Finally, a similar analysis into the alkylidene rotation was performed. It was determined that [2+2] cycloreversion and alkylidene rotations take place in a sequential manner, the energy barrier is again controlled by structural reorganization, and the pathway is less asynchronous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Grubbs RH, Wenzel AG (2015) Handbook of metathesis, volume 1: catalyst development and mechanism. WILEY-VCH, Weinheim,Germany

    Google Scholar 

  2. Feng K, Xie N, Chen B et al (2016) Modular design of poly(norbornenes) for organelle-specific imaging in tumor cells. Biomacromolecules 17:538–545. https://doi.org/10.1021/acs.biomac.5b01450

    Article  CAS  PubMed  Google Scholar 

  3. Hughes DL (2016) Highlights of the recent U.S. patent literature: focus on metathesis. Org Process Res Dev 20:1008–1015. https://doi.org/10.1021/acs.oprd.6b00167

    Article  CAS  Google Scholar 

  4. Sinclair F, Alkattan M, Prunet J, Shaver MP (2017) Olefin cross metathesis and ring-closing metathesis in polymer chemistry. Polym Chem 8:3385–3398. https://doi.org/10.1039/c7py00340d

    Article  CAS  Google Scholar 

  5. Liu P, Ai C (2018) Olefin metathesis reaction in rubber chemistry and industry and beyond. Ind Eng Chem Res 57:3807–3820. https://doi.org/10.1021/acs.iecr.7b03830

    Article  CAS  Google Scholar 

  6. Mcconville DH, Wolf JR, Schrock RR (1993) Synthesis of chiral molybdenum ROMP initiators and all-cis highly tactic poly(2,3-(R)2norbornadiene) (R= CF3 or CO2Me). J Am Chem Soc 115:4413–4414. https://doi.org/10.1021/ja00063a090

    Article  CAS  Google Scholar 

  7. Schrock RR (2006) Multiple metal-carbon bonds for catalytic metathesis reactions (Nobel lecture). Angew Chem Int Ed Eng 45:3748–3759. https://doi.org/10.1002/anie.200600085

    Article  CAS  Google Scholar 

  8. Singh R, Schrock RR, Müller P, Hoveyda AH (2007) Synthesis of monoalkoxide monopyrrolyl complexes Mo(NR)(CHR′) (OR″)(pyrrolyl): Enyne metathesis with high oxidation state catalysts. J Am Chem Soc 129:12654–12655. https://doi.org/10.1021/ja075569f

    Article  CAS  PubMed  Google Scholar 

  9. Samojłowicz C, Bieniek M, Grela K (2009) Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. Chem Rev 109:3708–3742. https://doi.org/10.1021/cr800524f

    Article  CAS  PubMed  Google Scholar 

  10. Vougioukalakis GC, Grubbs RH (2010) Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem Rev 110:1746–1787. https://doi.org/10.1021/cr9002424

    Article  CAS  PubMed  Google Scholar 

  11. Schwab P, Grubbs RH, Ziller JW, August RV (1996) Synthesis and applications of RuCl2 (=CHR′)( PR3)2 : the influence of the alkylidene moiety on metathesis activity. J Am Chem Soc 118:100–110. https://doi.org/10.1021/ja952676d

    Article  CAS  Google Scholar 

  12. Scholl M, Ding S, Lee CW, Grubbs RH (1999) Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org Lett 1:953–956. https://doi.org/10.1021/ol990909q

    Article  CAS  Google Scholar 

  13. Huang J, Stevens ED, Nolan SP et al (1999) Olefin metathesis-active ruthenium complexes bearing a nucleophilic carbene ligand. J Am Chem Soc 121:2674–2678. https://doi.org/10.1021/ja9831352

    Article  CAS  Google Scholar 

  14. Keitz BK, Endo K, Patel PR et al (2012) Improved ruthenium catalysts for Z-selective olefin metathesis. J Am Chem Soc 134:693–699. https://doi.org/10.1021/ja210225e

    Article  CAS  PubMed  Google Scholar 

  15. Khan RKM, Torker S, Hoveyda AH (2014) Reactivity and selectivity differences between catecholate and catechothiolate ru complexes. Implications regarding design of stereoselective olefin metathesis catalysts. J Am Chem Soc 136:14337–14340. https://doi.org/10.1021/ja505961z

    Article  CAS  PubMed  Google Scholar 

  16. Herisson PJ-L, Chauvin Y (1970) Catalyse de transformation des olefines par les complexes du tugstene. Macromol Chem Phys:161–176. https://doi.org/10.1002/macp.1971.021410112

    Article  Google Scholar 

  17. Chauvin Y (2006) Olefin metathesis: the early days (Nobel lecture). Angew Chem Int Ed Eng 45:3740–3747. https://doi.org/10.1002/anie.200601234

    Article  CAS  Google Scholar 

  18. Cavallo L (2002) Mechanism of ruthenium-catalyzed olefin metathesis reactions from a theoretical perspective. J Am Chem Soc 124:8965–8973. https://doi.org/10.1021/ja016772s

    Article  CAS  PubMed  Google Scholar 

  19. Tsipis AC, Orpen a G, Harvey JN (2005) Substituent effects and the mechanism of alkene metathesis catalyzed by ruthenium dichloride catalysts. Dalton Trans:2849–2858. https://doi.org/10.1039/b506929g

  20. Torker S, Merki D, Chen P (2008) Gas-phase thermochemistry of ruthenium carbene metathesis catalysts. J Am Chem Soc 130:4808–4814. https://doi.org/10.1021/ja078149z

    Article  CAS  PubMed  Google Scholar 

  21. Zhao Y, Truhlar DG (2007) Attractive noncovalent interactions in the mechanism of grubbs second-generation Ru catalysts for olefin metathesis. Org Lett 9:1967–1970. https://doi.org/10.1021/ol0705548

    Article  CAS  PubMed  Google Scholar 

  22. Paredes-Gil K, Solans-Monfort X, Rodriguez-Santiago L et al (2014) DFT study on the relative stabilities of substituted ruthenacyclobutane intermediates involved in olefin cross-metathesis reactions and their interconversion pathways. Organometallics 33:6065–6075. https://doi.org/10.1021/om500718a

    Article  CAS  Google Scholar 

  23. Paredes-Gil K, Jaque P (2016) Theoretical characterization of first and second generation Grubbs catalysts in styrene cross-metathesis reactions: insights from conceptual DFT. Catal Sci Technol 6:755–766. https://doi.org/10.1039/c5cy00826c

    Article  CAS  Google Scholar 

  24. Paredes-Gil K, Jaque P (2015) Initiation stage of alkene metathesis: insights from natural bond orbital and charge decomposition analyses. Chem Phys Lett 608:174–181. https://doi.org/10.1016/j.cplett.2014.11.007

    Article  CAS  Google Scholar 

  25. Sanford MS, Love JA, Grubbs RH (2001) A versatile precursor for the synthesis of new ruthenium olefin metathesis catalysts. Organometallics:5314–5318

  26. Sanford MS, Ulman M, Grubbs RH (2001) New insights into the mechanism of ruthenium-catalyzed olefin metathesis reactions. J Am Chem Soc 123:749–750. https://doi.org/10.1021/ja003582t

    Article  CAS  PubMed  Google Scholar 

  27. Minenkov Y, Occhipinti G, Heyndrickx W, Jensen VR (2012) The nature of the barrier to phosphane dissociation from Grubbs olefin metathesis catalysts. Eur J Inorg Chem 2012:1507–1516. https://doi.org/10.1002/ejic.201100932

    Article  CAS  Google Scholar 

  28. Yang H-C, Huang Y-C, Lan Y-K et al (2011) Carbene rotamer switching explains the reverse trans effect in forming the Grubbs second-generation olefin metathesis catalyst. Organometallics 30:4196–4200. https://doi.org/10.1021/om200529m

    Article  CAS  Google Scholar 

  29. Wenzel AG, Blake G, VanderVelde DG, Grubbs RH (2011) Characterization and dynamics of substituted ruthenacyclobutanes relevant to the olefin cross-metathesis reaction. J Am Chem Soc 133:6429–6439. https://doi.org/10.1021/ja2009746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wenzel AG, Grubbs RH (2006) Ruthenium metallacycles derived from 14-electron complexes. New insights into olefin metathesis intermediates. J Am Chem Soc 128:16048–16049. https://doi.org/10.1021/ja0666598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Toro-Labbé A (1999) Characterization of chemical reactions from the profiles of energy, chemical potential, and hardness. J Phys Chem A 103:4398–4403. https://doi.org/10.1021/jp984187g

    Article  Google Scholar 

  32. Politzer P, Toro-Labbé A, Gutiérrez-Oliva S, Murray JS (2012) Perspectives on the reaction force. In: Sabin JR BE (eds) (ed) Advances in quantum chemistry. pp 189–209

    Google Scholar 

  33. Jaque P, Toro-Labbé A, Politzer P, Geerlings P (2008) Reaction force constant and projected force constants of vibrational modes along the path of an intramolecular proton transfer reaction. Chem Phys Lett 456:135–140. https://doi.org/10.1016/j.cplett.2008.03.054

    Article  CAS  Google Scholar 

  34. Politzer P, Murray JS, Jaque P (2013) Perspectives on the reaction force constant. J Mol Model 19:4111–4118. https://doi.org/10.1007/s00894-012-1713-8

    Article  CAS  PubMed  Google Scholar 

  35. Smith MW, Baran PS (2015) As simple as [2+2]. Science (80- ) 349:925–926. https://doi.org/10.1126/science.aac9883

    Article  CAS  Google Scholar 

  36. Dewar MJS (1984) Multibond reactions cannot normally be synchronous. J Am Chem Soc 106:209–219. https://doi.org/10.1021/ja00313a042

    Article  CAS  Google Scholar 

  37. Yepes D, Murray JS, Santos JC et al (2013) Fine structure in the transition region: reaction force analyses of water-assisted proton transfers. J Mol Model 19:2689–2697. https://doi.org/10.1007/s00894-012-1475-3

    Article  CAS  PubMed  Google Scholar 

  38. Yepes D, Murray JS, Politzer P, Jaque P (2012) The reaction force constant: an indicator of the synchronicity in double proton transfer reactions. Phys Chem Chem Phys 14:11125–11134. https://doi.org/10.1039/c2cp41064h

    Article  CAS  PubMed  Google Scholar 

  39. Yepes D, Donoso-Tauda O, Pérez P et al (2013) The reaction force constant as an indicator of synchronicity/nonsynchronicity in [4+2] cycloaddition processes. Phys Chem Chem Phys 15:7311–7320. https://doi.org/10.1039/c3cp44197k

    Article  CAS  PubMed  Google Scholar 

  40. Yepes D, Murray JS, Pérez P et al (2014) Complementarity of reaction force and electron localization function analyses of asynchronicity in bond formation in Diels-Alder reactions. Phys Chem Chem Phys 16:6726–6734. https://doi.org/10.1039/c3cp54766c

    Article  CAS  PubMed  Google Scholar 

  41. Murray JS, Yepes D, Jaque P, Politzer P (2015) Insights into some Diels-Alder cycloadditions via the electrostatic potential and the reaction force constant. Comput Theor Chem 1053:270–280. https://doi.org/10.1016/j.comptc.2014.08.010

    Article  CAS  Google Scholar 

  42. Yepes D, Valenzuela J, Martínez-Araya JI et al (2019) Effect of the exchange-correlation functional on the synchronicity/nonsynchronicity in bond formation in Diels-Alder reactions: a reaction force constant analysis. Phys Chem Chem Phys 21:7412–7428. https://doi.org/10.1039/c8cp02284d

    Article  CAS  PubMed  Google Scholar 

  43. Fukui K (1981) The path of chemical reactions - the IRC approach. Acc Chem Res 14:363–368. https://doi.org/10.1021/ar00072a001

    Article  CAS  Google Scholar 

  44. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527. https://doi.org/10.1021/j100377a021

    Article  CAS  Google Scholar 

  45. Jaque P, Toro-Labbé A (2000) Theoretical study of the double proton transfer in the CHX-XH ⋯ CHX-XH (X = O, S) complexes. J Phys Chem A 104:995–1003. https://doi.org/10.1021/jp993016o

    Article  CAS  Google Scholar 

  46. Martínez J, Toro-Labbé A (2009) The reaction force. A scalar property to characterize reaction mechanisms. J Math Chem 45:911–927. https://doi.org/10.1007/s10910-008-9478-0

    Article  CAS  Google Scholar 

  47. Toro-Labbé A, Gutiérrez-Oliva S, Concha MC et al (2004) Analysis of two intramolecular proton transfer processes in terms of the reaction force. J Chem Phys 121:4570–4576. https://doi.org/10.1063/1.1777216

    Article  CAS  PubMed  Google Scholar 

  48. Gutiérrez-Oliva S, Herrera B, Toro-Labbé A, Chermette H (2005) On the mechanism of hydrogen transfer in the HSCH(O) ⇄ (S)CHOH and HSNO ⇄ SNOH reactions. J Phys Chem A 109:1748–1751. https://doi.org/10.1021/jp0452756

    Article  CAS  PubMed  Google Scholar 

  49. Herrera B, Toro-Labbé A (2007) The role of reaction force and chemical potential in characterizing the mechanism of double proton transfer in the adenine-uracil complex. J Phys Chem A 111:5921–5926. https://doi.org/10.1021/jp065951z

    Article  CAS  PubMed  Google Scholar 

  50. Jaque P, Toro-Labbe A, Geerlings P, De Proft F (2009) Theoretical study of the regioselectivity of [2 + 2] photocycloaddition reactions of acrolein with olefins. J Phys Chem A 113:332–344. https://doi.org/10.1021/jp807754f

    Article  CAS  PubMed  Google Scholar 

  51. Martínez-Araya JI, Quijada R, Toro-labbe A (2012) The mechanism of ethylene polymerization reaction catalyzed by group IVB metallocenes. A rational analysis through the use of reaction force. J Phys Chem C 116:21318–21325. https://doi.org/10.1021/jp302702h

    Article  CAS  Google Scholar 

  52. Politzer P, Murray JS, Yepes D, Jaque P (2014) Driving and retarding forces in a chemical reaction. J Mol Model 20:2351–2357. https://doi.org/10.1007/s00894-014-2351-0

    Article  CAS  PubMed  Google Scholar 

  53. Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2009) The reaction force and the transition region of a reaction. J Mol Model 15:707–710. https://doi.org/10.1007/s00894-008-0431-8

    Article  CAS  PubMed  Google Scholar 

  54. Politzer P, Toro-Labbé A, Gutiérrez-Oliva S et al (2005) The reaction force: three key points along an intrinsic reaction coordinate. J Chem Sci 117:467–472. https://doi.org/10.1007/BF02708350

    Article  CAS  Google Scholar 

  55. Rincón E, Jaque P, Toro-Labbé A (2006) Reaction force analysis of the effect of Mg(II) on the 1,3 intramolecular hydrogen transfer in thymine. J Phys Chem A 110:9478–9485. https://doi.org/10.1021/jp062870u

    Article  CAS  PubMed  Google Scholar 

  56. Burda JV, Toro-Labbé A, Gutiérrez-Oliva S et al (2007) Reaction force decomposition of activation barriers to elucidate solvent effects. J Phys Chem A 111:2455–2457. https://doi.org/10.1021/jp0709353

    Article  CAS  PubMed  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL W, DJ F (2009) Gaussian 09 Rev. B.01

    Google Scholar 

  58. Becke AD (1988) Correlation energy of an inhomogeneous electron gas: a coordinate-space model. J Chem Phys 88:1053–1062. https://doi.org/10.1063/1.454274

    Article  CAS  Google Scholar 

  59. Zhao Y, Truhlar DG (2006) A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J Chem Phys 125:194101–194118. https://doi.org/10.1063/1.2370993

    Article  CAS  PubMed  Google Scholar 

  60. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473. https://doi.org/10.1002/jcc.20078

    Article  CAS  PubMed  Google Scholar 

  61. Andrae D, H U, Dolg M et al (1990) Energy-adjusted ab initio pseudopotentials for the second and third row transition elements. Theor Chim Acta 77:123–141. https://doi.org/10.1007/BF01114537

    Article  CAS  Google Scholar 

  62. Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII. Further extensions of Gaussian—type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261. https://doi.org/10.1063/1.1677527

    Article  CAS  Google Scholar 

  63. Jacobsen H, Correa A, Poater A et al (2009) Understanding the M(NHC) (NHC=N-heterocyclic carbene) bond. Coord Chem Rev 253:687–703. https://doi.org/10.1016/j.ccr.2008.06.006

    Article  CAS  Google Scholar 

  64. Antonova NS, Carbó JJ, Poblet JM (2009) Quantifying the donor−acceptor properties of phosphine and N-heterocyclic carbene ligands in Grubbs’ catalysts using a modified EDA procedure based on orbital deletion. Organometallics 28:4283–4287. https://doi.org/10.1021/om900180m

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K.P-G., F.M, and P.J thank CONICYT through the FONDECYT projects 3170117, 1180158, and 1181914, respectively. Moreover, K.P-G. acknowledges “CONICYT+PAI+CONVOCATORIA NACIONAL SUBVENCIÓN A INSTALACIÓN EN LA ACADEMIA CONVOCATORIA AÑO 2018 + PAI77180024.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Paredes-Gil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection QUITEL 2018 (44th Congress of Theoretical Chemists of Latin Expression)

Electronic supplementary material

ESM 1

Supplementary information including the Cartesian coordinates of all computed species: i) alkene coordination with 14e- inactive and olefin to the first-generation Grubbs catalysts; ii) key points along the reaction pathways to 1st-Ru-[2+2] cycloaddition; iii) key points along the reaction pathways to 2nd-Ru-[2+2] cycloaddition; and iv) key points along the reaction pathways to the alkylidene rotation in the second-generation Grubbs catalysts. (PDF 592 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paredes-Gil, K., Mendizábal, F. & Jaque, P. Further understanding of the Ru-centered [2+2] cycloreversion/cycloaddition involved into the interconversion of ruthenacyclobutane using the Grubbs catalysts from a reaction force analysis. J Mol Model 25, 305 (2019). https://doi.org/10.1007/s00894-019-4150-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-019-4150-0

Keywords

Navigation