Skip to main content
Log in

Fine structure in the transition region: reaction force analyses of water-assisted proton transfers

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have analyzed the variation of the reaction force F(ξ) and the reaction force constant κ(ξ) along the intrinsic reaction coordinates ξ of the water-assisted proton transfer reactions of HX-N = Y (X,Y = O,S). The profile of the force constant of the vibration associated with the reactive mode, k ξ (ξ), was also determined. We compare our results to the corresponding intramolecular proton transfers in the absence of a water molecule. The presence of water promotes the proton transfers, decreasing the energy barriers by about 12 – 15 kcal mol-1. This is due in part to much smaller bond angle changes being needed than when water is absent. The κ(ξ) profiles along the intrinsic reaction coordinates for the water-assisted processes show striking and intriguing differences in the transition regions. For the HS-N = S and HO-N = S systems, two κ(ξ) minima are obtained, whereas for HO-N = O only one minimum is found. The k ξ (ξ) show similar behavior in the transition regions. We propose that this fine structure reflects the degree of synchronicity of the two proton migrations in each case.

Fine Structure in the Transition Region

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

References

  1. Toro-Labbé A (1999) J Phys Chem A 103:4398–4403

    Article  Google Scholar 

  2. Jaque P, Toro-Labbé A (2000) J Phys Chem A 104:995–1003

    Article  CAS  Google Scholar 

  3. Toro-Labbé A, Gutiérrez-Oliva S, Concha MC, Murray JS, Politzer P (2004) J Chem Phys 121:4570–4576

    Article  Google Scholar 

  4. Fukui K (1981) Acc Chem Res 14:363–368

    Article  CAS  Google Scholar 

  5. Gonzalez C, Schegel HB (1990) J Phys Chem 94:5523–5527

    Article  CAS  Google Scholar 

  6. Rincón E, Jaque P, Toro-Labbé A (2006) J Phys Chem A 110:9478–9485

    Article  Google Scholar 

  7. Burda JV, Murray JS, Toro-Labbé A, Gutiérrez-Oliva S, Politzer P (2009) J Phys Chem A 113:6500–6503

    Article  CAS  Google Scholar 

  8. Jaque P, Toro-Labbé A, Geerlings P, De Proft F (2009) J Phys Chem A 113:332–344

    Article  CAS  Google Scholar 

  9. Politzer P, Murray JS, Lane P, Toro-Labbé A (2007) Int J Quantum Chem 107:2153–2157

    Article  CAS  Google Scholar 

  10. Politzer P, Murray JS (2008) Collect Czech Chem Commun 73:822–830

    Article  CAS  Google Scholar 

  11. Murray JS, Toro-Labbé A, Clark T, Politzer P (2009) J Mol Model 15:701–706

    Article  CAS  Google Scholar 

  12. Politzer P, Burda JV, Concha MC, Lane P, Murray JS (2006) J Phys Chem A 110:756–761

    Article  CAS  Google Scholar 

  13. Burda JV, Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2007) J Phys Chem A 111:2455–2457

    Article  CAS  Google Scholar 

  14. Echegaray E, Toro-Labbé A (2008) J Phys Chem A 112:11801–11807

    Article  CAS  Google Scholar 

  15. Murray JS, Lane P, Göbel M, Klapötke TM, Politzer P (2009) Theor Chem Acc 124:355–363

    Article  CAS  Google Scholar 

  16. Murray JS, Lane P, Nieder A, Klapötke TM, Politzer P (2010) Theor Chem Acc 127:345–354

    Article  CAS  Google Scholar 

  17. Jaque P, Toro-Labbé A, Politzer P, Geerlings P (2008) Chem Phys Lett 456:135–140

    Article  CAS  Google Scholar 

  18. Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2009) J Mol Model 15:707–710

    Article  Google Scholar 

  19. Murray JS, Toro-Labbé A, Gutiérrez-Oliva S, Politzer P (2010) J Chem Phys 132:154308-154314

    Google Scholar 

  20. Politzer P, Reimers JR, Murray JS, Toro-Labbé A (2010) J Phys Chem Lett 1:2858–2862

    Article  CAS  Google Scholar 

  21. Polanyi JC, Zewail AH (1995) Acc Chem Res 28:119–132

    Article  CAS  Google Scholar 

  22. Zewail AH (2000) J Phys Chem A 104:5660–5694

    Article  CAS  Google Scholar 

  23. Herrera B, Toro-Labbé A (2004) J Phys Chem A 108:1830–1836

    Article  CAS  Google Scholar 

  24. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  25. Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  26. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  27. Gonzalez-Rivas N, Cedillo A (2005) J Chem Sci 117:555–560

    Article  CAS  Google Scholar 

  28. Frisch MJ, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr et al (2004) Gaussian 03, Revision E.01. Gaussian Inc, Wallingford

    Google Scholar 

  29. Jaramillo P, Coutinho K, Canuto S (2009) J Phys Chem A 113:12485–12495

    Article  CAS  Google Scholar 

  30. Borgoo A, Jaque P, Toro-Labbé A, Van Alsenoy C, Geerlings P (2009) Phys Chem Chem Phys 11:476–482

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D. Y. is grateful to Comisión Nacional de Investigación Científica y Tecnológica, Gobierno de Chile (CONICYT) for a Ph.D. fellowship. The authors acknowledge the financial support by Fondo Nacional de Desarrollo Científico y Tecnológico, Chile (FONDECYT), grant number 1100291.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jane S. Murray or Pablo Jaque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yepes, D., Murray, J.S., Santos, J.C. et al. Fine structure in the transition region: reaction force analyses of water-assisted proton transfers. J Mol Model 19, 2689–2697 (2013). https://doi.org/10.1007/s00894-012-1475-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1475-3

Keywords

Navigation