Skip to main content
Log in

A density functional theory study on oxygen reduction reaction on nitrogen-doped graphene

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Nitrogen (N)-doped carbons reportedly exhibit good electrocatalytic activity for the oxygen reduction reaction (ORR) of fuel cells. This work provides theoretical insights into the ORR mechanism of N-doped graphene by using density functional theory calculations. All possible reaction pathways were investigated, and the transition state of each elementary step was identified. The results showed that OOH reduction was easier than O–OH breaking. OOH reduction followed a direct Eley–Rideal mechanism (the OOH species was in gas phase, but H was chemisorbed on the surface) with a significantly low reaction barrier of 0.09 eV. Pathways for both four-electron and two-electron reductions were possible. The rate-determining step of the two-electron pathway was the reduction of O2 (formation of OOH), whereas that of the four-electron pathway was the reduction of OH into H2O. After comparing the barriers of the rate-determining steps of the two pathways, we found that the two-electron pathway was more energetically favored than the four-electron pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xiong W, Du F, Liu Y, Perez A, Supp M, Ramakrishnan TS, Dai L, Jiang L (2010) J Am Chem Soc 132:15839–15841

    Article  CAS  Google Scholar 

  2. Chen Z, Higgins D, Tao H, Hsu RS, Chen Z (2009) J Phys Chem C 113:21008–21013

    Article  CAS  Google Scholar 

  3. Steele BC, Heinzel A (2001) Nature 414:345–352

    Article  CAS  Google Scholar 

  4. Winter M, Brodd RJ (2004) Chem Rev 104:4245–4270

    Article  CAS  Google Scholar 

  5. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B 56:9–35

    Article  CAS  Google Scholar 

  6. Yu X, Ye S (2007) J Power Sources 172:145–154

    Article  CAS  Google Scholar 

  7. Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Science 323:760–764

    Article  CAS  Google Scholar 

  8. Qu L, Liu Y, Baek J-BDai L (2010) ACS Nano 4:1321–1326

    Article  CAS  Google Scholar 

  9. Geng DS, Chen Y, Chen YG, Li YL, Li RY, Sun XL, Ye SY, Knights S (2011) Energy Environ Sci 4:760–764

    Article  CAS  Google Scholar 

  10. Kundu S, Nagaiah TC, Xia W, Wang YM, Van Dommele S, Bitter JH, Santa M, Grundmeier G, Bron M, Schuhmann W, Muhler M (2009) J Phys Chem C 113:14302–14310

    Article  CAS  Google Scholar 

  11. Niwa H, Kobayashi M, Horiba K, Harada Y, Oshima M, Terakura K, Ikeda T, Koshigoe Y, Ozaki J-i, Miyata S, Ueda S, Yamashita Y, Yoshikawa H, Kobayashi K (2011) J Power Sources 196:1006–1011

    Article  CAS  Google Scholar 

  12. Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J-iMiyata S (2009) J Power Sources 187:93–97

    Article  CAS  Google Scholar 

  13. Tang YF, Allen BL, Kauffman DR, Star A (2009) J Am Chem Soc 131:13200–13201

    Article  CAS  Google Scholar 

  14. Wang Y, Shao YY, Matson DW, Li JH, Lin YH (2010) ACS Nano 4:1790–1798

    Article  CAS  Google Scholar 

  15. Vanin M, Gath J, Thygesen KS, Jacobsen KW (2010) Phys Rev B 82:195411 doi: 10.1103/PhysRevB.82.195411

  16. Wang Z, Jia R, Zheng J, Zhao J, Li L, Song J, Zhu Z (2011) ACS Nano 5:1677–1684

    Article  CAS  Google Scholar 

  17. Ma G, Jia R, Zhao J, Wang Z, Song C, Jia S, Zhu Z (2011) J Phys Chem C 115:25148–25154

    Article  CAS  Google Scholar 

  18. Matter PH, Ozkan US (2006) Catal Lett 109:115–123

    Article  CAS  Google Scholar 

  19. Maldonado S, Stevenson KJ (2005) J Phys Chem B 109:4707–4716

    Article  CAS  Google Scholar 

  20. Chen S, Bi J, Zhao Y, Yang L, Zhang C, Ma Y, Wu Q, Wang XHZ (2012) Adv Mater 24:5593–5597

    Article  CAS  Google Scholar 

  21. Zhang S, Zhang H, Liu Q, Chen S (2013) J Mater Chem A 1:3302–3308

    Article  CAS  Google Scholar 

  22. Deng DH, Pan XL, Yu LA, Cui Y, Jiang YP, Qi J, Li WX, Fu QA, Ma XC, Xue QK, Sun GQ, Bao XH (2011) Chem Mater 23:1188–1193

    Article  CAS  Google Scholar 

  23. Lee KR, Lee KU, Lee JW, Ahn BT, Woo SI (2010) Electrochem Commun 12:1052–1055

    Article  CAS  Google Scholar 

  24. Huang S-F, Terakura K, Ozaki T, Ikeda T, Boero M, Oshima M, Ozaki J-iMiyata S (2009) Phys Rev B 80:235410

    Article  Google Scholar 

  25. Kim H, Lee K, Woo SI, Jung Y (2011) Phys Chem Chem Phys 13:17505–17510

    Article  CAS  Google Scholar 

  26. Zhang L, Xia Z (2011) J Phys Chem C 115:11170–11176

    Article  CAS  Google Scholar 

  27. Ikeda T, Boero M, Huang S-F, Terakura K, Oshima M, Ozaki J-I (2008) J Phys Chem C 112:14706–14709

    Article  CAS  Google Scholar 

  28. Sidik RA, Anderson AB, Subramanian NP, Kumaraguru SP, Popov BN (2006) J Phys Chem B 110:1787–1793

    Article  CAS  Google Scholar 

  29. Lai L, Potts JR, Zhan D, Wang L, Poh CK, Tang C, Gong H, Shen Z, Lin J, Ruoff RS (2012) Energy Environ Sci 5:7936–7942

    Article  CAS  Google Scholar 

  30. Xu Z, Li H, Fu M, Luo H, Sun H, Zhang L, Li K, Wei B, Lu J, Zhao X (2012) J Mater Chem 22:18230–18236

    Article  CAS  Google Scholar 

  31. Okamoto Y (2009) Appl Surf Sci 256:335–341

    Article  CAS  Google Scholar 

  32. Luo Z, Lim S, Tian Z, Shang J, Lai L, MacDonald B, Fu C, Shen Z, Yu T, Lin J (2011) J Mater Chem 21:8038–8044

    Article  CAS  Google Scholar 

  33. Yu L, Pan X, Cao X, Hu P, Bao X (2011) J Catal 282:183–190

    Article  CAS  Google Scholar 

  34. Payne MC, Teter MP, Allan DC, Arias T, Joannopoulos J (1992) Rev Mod Phys 64:1045–1097

    Article  CAS  Google Scholar 

  35. Milman V, Winkler B, White J, Pickard C, Payne M, Akhmatskaya E, Nobes R (2000) Int J Quantum Chem 77:895–910

    Article  CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  37. Perdew JP, Chevary J, Vosko S, Jackson KA, Pederson MR, Singh D, Fiolhais C (1992) Phys Rev B 46:6671

    Article  CAS  Google Scholar 

  38. Ge Q, Jenkins S, King D (2000) Chem Phys Lett 327:125–130

    Article  CAS  Google Scholar 

  39. Dai JY, Yuan JM (2010) Phys Rev B 81:165414

    Article  Google Scholar 

  40. Zhao L, He R, Rim KT, Schiros T, Kim KS, Zhou H, Gutiérrez C, Chockalingam S, Arguello CJ, Pálová L (2011) Science 333:999–1003

    Article  CAS  Google Scholar 

  41. Wang Y, Balbuena PB (2005) J Phys Chem B 109:14896–14907

    Article  CAS  Google Scholar 

  42. Rossmeisl J, Qu Z-W, Zhu H, Kroes G-JNørskov JK (2007) J Electroanal Chem 607:83–89

    Article  CAS  Google Scholar 

  43. Hyman MP, Medlin JW (2006) J Phys Chem B 110:15338–15344

    Article  CAS  Google Scholar 

  44. Zhang J, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Angew Chem Int Ed 44:2132–2135

    Article  CAS  Google Scholar 

  45. Damjanovic A, Brusic V (1967) Electrochim Acta 12:615–628

    Article  CAS  Google Scholar 

  46. Jacob T, Goddard WA (2006) Chem Phys Chem 7:992–1005

    Article  CAS  Google Scholar 

  47. Nilekar AU, Mavrikakis M (2008) Surf Sci 602:L89–L94

    Article  CAS  Google Scholar 

  48. Tripković V, Skúlason E, Siahrostami S, Nørskov JK, Rossmeisl J (2010) Electrochim Acta 55:7975–7981

    Article  Google Scholar 

  49. Wang J, Markovic N, Adzic R (2004) J Phys Chem B 108:4127–4133

    Article  CAS  Google Scholar 

  50. Studt F (2013) Catal Lett 143:58–60

    Article  CAS  Google Scholar 

  51. Eley D, Rideal E (1940) Nature 146:401–402

    Article  CAS  Google Scholar 

  52. Kuipers E, Vardi A, Danon A, Amirav A (1991) Phys Rev Lett 66:116

    Article  CAS  Google Scholar 

  53. Meijer AJHM, Farebrother AJ, Clary DC, Fisher AJ (2001) J Phys Chem A 105:2173–2182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The calculations were performed at the Shanghai Supercomputing Center. This work was supported by the Natural Science Foundation of China (Nos. 20673135 and 50702065), Shanxi Natural Science Foundation (2008021029-1), and Knowledge Innovation Project of Chinese Academy of Science (No. KJCX2.YW.M10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenping Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Wang, Z. & Zhu, Z. A density functional theory study on oxygen reduction reaction on nitrogen-doped graphene. J Mol Model 19, 5515–5521 (2013). https://doi.org/10.1007/s00894-013-2047-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-013-2047-x

Keywords

Navigation