Skip to main content
Log in

The Oxygen Reduction Reaction on Nitrogen-Doped Graphene

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The oxygen reduction reaction on a graphene sheet with 6.3 % doping of nitrogen is analyzed using density functional theory calculations. It is found that all intermediates involved in the oxygen reduction reaction bind on the carbon atom next to the nitrogen dopant. The first reduction step to produce the OOH* intermediate is only moderately downhill in free energy while further reduction to O* and OH* are more exothermic. The reduction from step from O* to OH* is found responsible for the experimentally observed overpotential.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Morozan A, Jousselme B, Palacin S (2011) Energy Environ Sci 4:1238

    Article  CAS  Google Scholar 

  2. Lefevre M, Proietti E, Jaouen F, Dodelet JP (2009) Science 324:71

    Article  CAS  Google Scholar 

  3. Stamenkovic VR, Fowler B, Mun BS, Wang GW, Ross PN, Lucas CA, Markovic NM (2007) Science 315:493

    Article  CAS  Google Scholar 

  4. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Nat Chem 1:552

    Article  CAS  Google Scholar 

  5. Wang C, Li D, Chi M, Pearson J, Rankin RB, Greeley J, Duan Z, Wang G, van der Vliet D, More KL, Markovic NM, Stamenkovic VR (2012) J Phys Chem Lett 3:1668

    Article  CAS  Google Scholar 

  6. Wang C, Markovic NM, Stamenkovic VR (2012) ACS Catal 2:891

    Article  CAS  Google Scholar 

  7. Bing Y, Liu H, Ghosh D, Zhang J (2010) Chem Soc Rev 39:2184

    Article  CAS  Google Scholar 

  8. Liu R, Wu DQ, Feng XL, Müllen K (2010) Angew Chem Int Ed 49:2565

    Article  CAS  Google Scholar 

  9. Yang W, Fellinger TP, Antonietti M (2011) J Am Chem Soc 133:206

    Article  CAS  Google Scholar 

  10. Wang Y, Wang X, Antonietti M (2012) Angew Chem Int Ed 51:68

    Article  CAS  Google Scholar 

  11. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Science 323:760

    Article  CAS  Google Scholar 

  12. Shao Y, Sui J, Yin G, Gao Y (2008) Appl Catal B 79:89

    Article  CAS  Google Scholar 

  13. Zheng Y, Jiao Y, Chen J, Liang J, Du A, Zhang W, Zhu Z, Smith SC, Jaroniec M, Lu GQ, Qiao SZ (2011) J Am Chem Soc 133:20116

    Article  CAS  Google Scholar 

  14. Okamoto Y (2009) Appl Surf Sci 256:335

    Article  CAS  Google Scholar 

  15. Sidik RA, Anderson AB, Subramanian NP, Kumaraguru SP, Popov BN (2006) J Phys Chem B 110:1787

    Article  CAS  Google Scholar 

  16. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) J Phys Chem B 108:17886

    Article  Google Scholar 

  17. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Nørskov JK (2007) J Electroanal Chem 607:83

    Article  CAS  Google Scholar 

  18. Skúlason E, Bligaard T, Gudmundsdóttir S, Studt F, Rossmeisl J, Abild-Pedersen F, Vegge T, Jónsson H, Nørskov JK (2012) Phys Chem Chem Phys 14:1235

    Article  Google Scholar 

  19. Peterson AA, Abild-Pedersen F, Studt F, Rossmeisl J, Nørskov JK (2010) Energy Environ Sci 3:1311

    Article  CAS  Google Scholar 

  20. Mortensen JJ, Hansen LB, Jacobsen KW (2005) Phys Rev B 71:035109

    Article  Google Scholar 

  21. Enkovaara J, Rostgaard C, Mortensen JJ, Chen J, Dulak M, Ferrighi L, Gavnholt J, Glinsvad C, Haikola V, Hansen HA, Kristoffersen HH, Kuisma M, Larsen AH, Lehtovaara L, Ljungberg M, Lopez-Acevedo O, Moses PG, Ojanen J, Olsen T, Petzold V, Romero NA, Stausholm J, Strange M, Trisaris GA, Vanin M, Walter M, Hammer B, Häkkinen H, Madsen GKH, Nieminen RM, Nørskov JK, Puska M, Rantala TT, Schiøtz J, Thygesen KS, Jacobsen KW (2010) J Phys Condens Matter 22:253202

    Article  CAS  Google Scholar 

  22. Wellendorf J, Lundgaard KT, Møgelhøj A, Petzold V, Landis DD, Nørskov JK, Bligaard T, Jacobsen KW (2012) Phys Rev B 85:235149

    Article  Google Scholar 

  23. Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188

    Article  Google Scholar 

  24. Rossmeisl J, Logadottir A, Nørskov JK (2005) Chem Phys 319:178–184

    Article  CAS  Google Scholar 

  25. Skúlason E, Karlberg GS, Rossmeisl J, Bligaard T, Greeley J, Jónsson H, Nørskov JK (2007) Phys Chem Chem Phys 9:3241

    Article  Google Scholar 

  26. Tripković V, Skúlason E, Siahrostami S, Nørskov JK, Rossmeisl J (2010) Electrochim Acta 55:7975

    Article  Google Scholar 

  27. Karlberg GS, Wahnström G (2004) Phys Rev Lett 92:136103

    Article  CAS  Google Scholar 

  28. Wang Y, Li H, Yao J, Wang X, Antonietti M (2011) Chem Sci 2:446–450

    Article  CAS  Google Scholar 

  29. Liu G, Niu P, Sun CH, Smith SC, Chen ZG, Lu GQ, Cheng HM (2010) J Am Chem Soc 132:11642

    Article  CAS  Google Scholar 

  30. Zhang J, Sun J, Maeda K, Domen K, Liu P, Antonietti M, Fu X, Wang X (2011) Energy Environ Sci 4:675

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Studt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 270 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Studt, F. The Oxygen Reduction Reaction on Nitrogen-Doped Graphene. Catal Lett 143, 58–60 (2013). https://doi.org/10.1007/s10562-012-0918-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-012-0918-x

Keywords

Navigation