Skip to main content

Advertisement

Log in

Screening of key candidate genes and pathways for osteocytes involved in the differential response to different types of mechanical stimulation using a bioinformatics analysis

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

This study aimed to predict the key genes and pathways that are activated when different types of mechanical loading are applied to osteocytes. mRNA expression datasets (series number of GSE62128 and GSE42874) were obtained from Gene Expression Omnibus database (GEO). High gravity-treated osteocytic MLO-Y4 cell-line samples from GSE62128 (Set1), and fluid flow-treated MLO-Y4 samples from GSE42874 (Set2) were employed. After identifying the differentially expressed genes (DEGs), functional enrichment was performed. The common DEGs between Set1 and Set2 were considered as key DEGs, then a protein–protein interaction (PPI) network was constructed using the minimal nodes from all of the DEGs in Set1 and Set2, which linked most of the key DEGs. Several open source software programs were employed to process and analyze the original data. The bioinformatic results and the biological meaning were validated by in vitro experiments. High gravity and fluid flow induced opposite expression trends in the key DEGs. The hypoxia-related biological process and signaling pathway were the common functional enrichment terms among the DEGs from Set1, Set2 and the PPI network. The expression of almost all the key DEGs (Pdk1, Ccng2, Eno2, Egln1, Higd1a, Slc5a3 and Mxi1) were mechano-sensitive. Eno2 was identified as the hub gene in the PPI network. Eno2 knockdown results in expression changes of some other key DEGs (Pdk1, Mxi1 and Higd1a). Our findings indicated that the hypoxia response might have an important role in the differential responses of osteocytes to the different types of mechanical force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Galea GL, Lanyon LE, Price JS (2017) Sclerostin’s role in bone’s adaptive response to mechanical loading. Bone 96:38–44. https://doi.org/10.1016/j.bone.2016.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sugawara Y, Kamioka H, Ishihara Y et al (2013) The early mouse 3D osteocyte network in the presence and absence of mechanical loading. Bone 52:189–196. https://doi.org/10.1016/j.bone.2012.09.033

    Article  PubMed  Google Scholar 

  3. Weinbaum S, Cowin SC, Zeng Y (1994) A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J Biomech 27:339–360. https://doi.org/10.1016/0021-9290(94)90010-8

    Article  CAS  PubMed  Google Scholar 

  4. Adachi T, Aonuma Y, Ito Ichi S et al (2009) Osteocyte calcium signaling response to bone matrix deformation. J Biomech 42:2507–2512. https://doi.org/10.1016/j.jbiomech.2009.07.006

    Article  PubMed  Google Scholar 

  5. Sapir-Koren R, Livshits G (2014) Osteocyte control of bone remodeling: is sclerostin a key molecular coordinator of the balanced bone resorption–formation cycles? Osteoporos Int 25:2685–2700. https://doi.org/10.1007/s00198-014-2808-0

    Article  CAS  PubMed  Google Scholar 

  6. Kamioka H, Honjo T, Takano-Yamamoto T (2001) A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone 28:145–149. https://doi.org/10.1016/S8756-3282(00)00421-X

    Article  CAS  PubMed  Google Scholar 

  7. Jing D, Baik AD, Lu XL et al (2014) In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. FASEB J 28:145–149. https://doi.org/10.1096/fj.13-237578

    Article  CAS  Google Scholar 

  8. Phipson B, Lee S, Majewski IJ et al (2016) Robust hyperparameter estimation protects against hypervariable genes and improves power to detect differential expression. Ann Appl Stat 10:946–963. https://doi.org/10.1214/16-AOAS920

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ashburner M, Ball CA, Blake JA et al (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Carbon S, Dietze H, Lewis SE et al (2017) Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Res 45:D331–D338. https://doi.org/10.1093/nar/gkw1108

    Article  CAS  Google Scholar 

  11. Ogata H, Goto S, Sato K et al (1999) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 27:29–34. https://doi.org/10.1093/nar/27.1.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang D, Sherman BT, Tan Q et al (2007) The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 8:R183. https://doi.org/10.1186/gb-2007-8-9-r183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mering C v (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31:258–261. https://doi.org/10.1093/nar/gkg034

    Article  CAS  Google Scholar 

  14. Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. In: Hamacher M, Eisenacher M, Stephan C (eds) Data mining in proteomics: from standards to applications, 1st edn. Springer, Heidelberg, pp 291–303

    Chapter  Google Scholar 

  15. Yip KY, Yu H, Kim PM et al (2006) The tYNA platform for comparative interactomics: a web tool for managing, comparing and mining multiple networks. Bioinformatics 22:2968–2970. https://doi.org/10.1093/bioinformatics/btl488

    Article  CAS  PubMed  Google Scholar 

  16. Kamioka H, Sugawara Y, Murshid SA et al (2006) Fluid shear stress induces less calcium response in a single primary osteocyte than in a single osteoblast: implication of different focal adhesion formation. J Bone Miner Res 21:1012–1021. https://doi.org/10.1359/jbmr.060408

    Article  CAS  PubMed  Google Scholar 

  17. Frangos J, Eskin S, McIntire L, Ives C (1985) Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–1479. https://doi.org/10.1126/science.3883488

    Article  CAS  PubMed  Google Scholar 

  18. Odagaki N, Ishihara Y, Wang Z et al (2018) Role of osteocyte-PDL crosstalk in tooth movement via SOST/sclerostin. J Dent Res. https://doi.org/10.1177/0022034518771331

    Article  PubMed  Google Scholar 

  19. Yu K, Sellman DP, Bahraini A et al (2017) Mechanical loading disrupts osteocyte plasma membranes which initiates mechanosensation events in bone. J Orthop Res 36:653–662. https://doi.org/10.1002/jor.23665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu C, Rankin EB, Castellini L et al (2015) Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. Genes Dev 29:817–831. https://doi.org/10.1101/gad.255000.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen X, Wan C, Ramaswamy G et al (2009) Prolyl hydroxylase inhibitors increase neoangiogenesis and callus formation following femur fracture in mice. J Orthop Res 27:1298–1305. https://doi.org/10.1002/jor.20886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Huang J, Liu L, Feng M et al (2015) Effect of CoCl2 on fracture repair in a rat model of bone fracture. Mol Med Rep 12:5951–5956. https://doi.org/10.3892/mmr.2015.4122

    Article  CAS  PubMed  Google Scholar 

  23. Stewart R, Goldstein J, Eberhardt A et al (2011) Increasing vascularity to improve healing of a segmental defect of the rat femur. J Orthop Trauma 25:472–476. https://doi.org/10.1097/BOT.0b013e31822588d8

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhang W, Li G, Deng L et al (2012) New bone formation in a true bone ceramic scaffold loaded with desferrioxamine in the treatment of segmental bone defect: a preliminary study. J Orthop Sci 17:289–298. https://doi.org/10.1007/s00776-012-0206-z

    Article  CAS  PubMed  Google Scholar 

  25. Wan C, Gilbert SR, Wang Y et al (2008) Activation of the hypoxia-inducible factor-1 pathway accelerates bone regeneration. Proc Natl Acad Sci 105:686–691. https://doi.org/10.1073/pnas.0708474105

    Article  PubMed  PubMed Central  Google Scholar 

  26. Liu X, Tu Y, Zhang L et al (2014) Prolyl hydroxylase inhibitors protect from the bone loss in ovariectomy rats by increasing bone vascularity. Cell Biochem Biophys 69:141–149. https://doi.org/10.1007/s12013-013-9780-8

    Article  CAS  PubMed  Google Scholar 

  27. Peng J, Lai ZG, Fang ZL et al (2014) Dimethyloxalylglycine prevents bone loss in ovariectomized C57BL/6 J mice through enhanced angiogenesis and osteogenesis. PLoS One 9:e112744. https://doi.org/10.1371/journal.pone.0112744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bentovim L, Amarilio R, Zelzer E (2013) HIF1 is a central regulator of collagen hydroxylation and secretion under hypoxia during bone development. Development 140:248–248. https://doi.org/10.1242/dev.092023

    Article  CAS  Google Scholar 

  29. Kim J, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3:177–185. https://doi.org/10.1016/j.cmet.2006.02.002

    Article  CAS  PubMed  Google Scholar 

  30. Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci Signal 2005:re12–re12. https://doi.org/10.1126/stke.3062005re12

    Article  Google Scholar 

  31. Fujiwara M, Kubota T, Wang W et al (2016) Successful induction of sclerostin in human-derived fibroblasts by 4 transcription factors and its regulation by parathyroid hormone, hypoxia, and prostaglandin E2. Bone 85:91–98. https://doi.org/10.1016/j.bone.2016.01.024

    Article  CAS  PubMed  Google Scholar 

  32. Lin C, Jiang X, Dai Z et al (2009) Sclerostin mediates bone response to mechanical unloading through antagonizing wnt/β-catenin signaling. J Bone Miner Res 24:1651–1661. https://doi.org/10.1359/jbmr.090411

    Article  CAS  PubMed  Google Scholar 

  33. Winkler DG (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22:6267–6276. https://doi.org/10.1093/emboj/cdg599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ellies DL, Viviano B, McCarthy J et al (2006) Bone density ligand, sclerostin, directly interacts with LRP5 but not LRP5G171 V to modulate wnt activity. J Bone Miner Res 21:1738–1749. https://doi.org/10.1359/jbmr.060810

    Article  CAS  PubMed  Google Scholar 

  35. McGee-Lawrence ME, Ryan ZC, Carpio LR et al (2013) Sclerostin deficient mice rapidly heal bone defects by activating β-catenin and increasing intramembranous ossification. Biochem Biophys Res Commun 441:886–890. https://doi.org/10.1016/j.bbrc.2013.10.155

    Article  CAS  PubMed  Google Scholar 

  36. Cosman F, Crittenden DB, Adachi JD et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375:1532–1543. https://doi.org/10.1056/NEJMoa1607948

    Article  CAS  PubMed  Google Scholar 

  37. Saag KG, Petersen J, Brandi ML et al (2017) Romosozumab or alendronate for fracture prevention in women with osteoporosis. N Engl J Med 377:1417–1427. https://doi.org/10.1056/NEJMoa1708322

    Article  CAS  PubMed  Google Scholar 

  38. Chen NX, Ryder KD, Pavalko FM et al (2000) Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. Am J Physiol Cell Physiol 278:C989–C997. https://doi.org/10.1152/ajpcell.2000.278.5.C989

    Article  CAS  PubMed  Google Scholar 

  39. Dai Z, Chung SK, Miao D et al (2011) Sodium/myo-inositol cotransporter 1 and myo-inositol are essential for osteogenesis and bone formation. J Bone Miner Res 26:582–590. https://doi.org/10.1002/jbmr.240

    Article  CAS  PubMed  Google Scholar 

  40. Vande Velde C, Cizeau J, Dubik D et al (2000) BNIP3 and genetic control of necrosis-like cell death through the mitochondrial permeability transition pore. Mol Cell Biol 20:5454–5468. https://doi.org/10.1128/MCB.20.15.5454-5468.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu J, Yuan C, Pu L, Wang J (2017) Nutrient deprivation induces apoptosis of nucleus pulposus cells via activation of the BNIP3/AIF signalling pathway. Mol Med Rep 16:7253–7260. https://doi.org/10.3892/mmr.2017.7550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu J, Wang J, Zhou Y (2012) Upregulation of BNIP3 and translocation to mitochondria in nutrition deprivation induced apoptosis in nucleus pulposus cells. Jt Bone Spine 79:186–191. https://doi.org/10.1016/j.jbspin.2011.04.011

    Article  CAS  Google Scholar 

  43. Prideaux M, Dallas SL, Zhao N et al (2015) Parathyroid hormone induces bone cell motility and loss of mature osteocyte phenotype through L-calcium channel dependent and independent mechanisms. PLoS ONE 10:1–25. https://doi.org/10.1371/journal.pone.0125731

    Article  CAS  Google Scholar 

  44. Ullah M, Stich S, Notter M et al (2013) Transdifferentiation of mesenchymal stem cells-derived adipogenic-differentiated cells into osteogenic- or chondrogenic-differentiated cells proceeds via dedifferentiation and have a correlation with cell cycle arresting and driving genes. Differentiation 85:78–90. https://doi.org/10.1016/j.diff.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  45. Bellido T, Ali AA, Gubrij I et al (2005) Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146:4577–4583. https://doi.org/10.1210/en.2005-0239

    Article  CAS  PubMed  Google Scholar 

  46. Ameri K, Rajah AM, Nguyen V et al (2013) Nuclear localization of the mitochondrial factor HIGD1A during metabolic stress. PLoS One 8:e62758. https://doi.org/10.1371/journal.pone.0062758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. An HJ, Shin H, Jo SG et al (2011) The survival effect of mitochondrial Higd-1a is associated with suppression of cytochrome C release and prevention of caspase activation. Biochim Biophys Acta-Mol Cell Res 1813:2088–2098. https://doi.org/10.1016/j.bbamcr.2011.07.017

    Article  CAS  Google Scholar 

  48. Yokomoto-Umakoshi M, Kanazawa I, Takeno A et al (2016) Activation of AMP-activated protein kinase decreases receptor activator of NF-κB ligand expression and increases sclerostin expression by inhibiting the mevalonate pathway in osteocytic MLO-Y4 cells. Biochem Biophys Res Commun 469:791–796. https://doi.org/10.1016/j.bbrc.2015.12.072

    Article  CAS  PubMed  Google Scholar 

  49. Tascau L, Gardner T, Anan H et al (2016) Activation of protein kinase a in mature osteoblasts promotes a major bone anabolic response. Endocrinology 157:112–126. https://doi.org/10.1210/en.2015-1614

    Article  CAS  PubMed  Google Scholar 

  50. Takeno A, Kanazawa I, Tanaka K et al (2015) Activation of AMP-activated protein kinase protects against homocysteine-induced apoptosis of osteocytic MLO-Y4 cells by regulating the expressions of NADPH oxidase 1 (Nox1) and Nox2. Bone 77:135–141. https://doi.org/10.1016/j.bone.2015.04.025

    Article  CAS  PubMed  Google Scholar 

  51. Zhan P, Zhao S, Yan H et al (2017) α-enolase promotes tumorigenesis and metastasis via regulating AMPK/mTOR pathway in colorectal cancer. Mol Carcinog 56:1427–1437. https://doi.org/10.1002/mc.22603

    Article  CAS  PubMed  Google Scholar 

  52. de Araujo RMS, Oba Y, Moriyama K (2007) Identification of genes related to mechanical stress in human periodontal ligament cells using microarray analysis. J Periodontal Res 42:15–22. https://doi.org/10.1111/j.1600-0765.2006.00906.x

    Article  CAS  PubMed  Google Scholar 

  53. Hamamura K, Liu Y, Yokota H (2008) Microarray analysis of thapsigargin - Induced stress to the endoplasmic reticulum of mouse osteoblasts. J Bone Miner Metab 26:231–240. https://doi.org/10.1007/s00774-007-0825-1

    Article  CAS  PubMed  Google Scholar 

  54. Kim H-S, Choi D-Y, Yun SJ et al (2012) Proteomic analysis of microvesicles derived from human mesenchymal stem cells. J Proteome Res 11:839–849. https://doi.org/10.1021/pr200682z

    Article  CAS  PubMed  Google Scholar 

  55. Li J, Ahmad T, Spetea M et al (2001) Bone reinnervation after fracture: a study in the rat. J Bone Miner Res 16:1505–1510. https://doi.org/10.1359/jbmr.2001.16.8.1505

    Article  CAS  PubMed  Google Scholar 

  56. Strange-Vognsen HH, Laursen H (1997) Nerves in human epiphyseal uncalcified cartilage. J Pediatr Orthop B 6:56–58

    Article  CAS  PubMed  Google Scholar 

  57. Hukkanen M, Konttinen YT, Santavirta S et al (1993) Rapid proliferation of calcitonin gene-related peptide-immunoreactive nerves during healing of rat tibial fracture suggests neural involvement in bone growth and remodelling. Neuroscience 54:969–979. https://doi.org/10.1016/0306-4522(93)90588-7

    Article  CAS  PubMed  Google Scholar 

  58. Liu M, Sun Y, Zhang Q (2018) Emerging role of extracellular vesicles in bone remodeling. J Dent Res. https://doi.org/10.1177/0022034518764411

    Article  PubMed  PubMed Central  Google Scholar 

  59. Qin Y, Peng Y, Zhao W et al (2017) Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: a novel mechanism in muscle-bone communication. J Biol Chem 292:11021–11033. https://doi.org/10.1074/jbc.M116.770941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Herrera MB, Fonsato V, Gatti S et al (2010) Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med 14:1605–1618. https://doi.org/10.1111/j.1582-4934.2009.00860.x

    Article  CAS  PubMed  Google Scholar 

  61. Lai RC, Arslan F, Lee MM et al (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4:214–222. https://doi.org/10.1016/j.scr.2009.12.003

    Article  CAS  PubMed  Google Scholar 

  62. Bruno S, Grange C, Deregibus MC et al (2009) Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 20:1053–1067. https://doi.org/10.1681/ASN.2008070798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aguirre JI, Plotkin LI, Stewart SA et al (2006) Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res 21:605–615. https://doi.org/10.1359/jbmr.060107

    Article  PubMed  Google Scholar 

  64. Manolagas SC, Parfitt AM (2010) What old means to bone. Trends Endocrinol Metab 21:369–374. https://doi.org/10.1016/j.tem.2010.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Takano-Yamamoto T (2014) Osteocyte function under compressive mechanical force. Jpn Dent Sci Rev 50:29–39. https://doi.org/10.1016/j.jdsr.2013.10.004

    Article  Google Scholar 

  66. Plotkin LI (2014) Apoptotic osteocytes and the control of targeted bone resorption. Curr Osteoporos Rep 12:121–126. https://doi.org/10.1007/s11914-014-0194-3

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The present work was supported by Grant-in-Aid for Scientific Research (to H. Kamioka [16H05549] and [16K15837], to Y. Ishihara [17H04413]) from the Japan Society for the Promotion of Science, Japan. Lastly, Ziyi Wang would like to dedicate this article to his wife, Yao Weng, who saw too much of the back of his head as he looked at the computer screen while he was coding, processing data and revising the manuscript before the deadline. His wife’s tolerance is best described as remarkable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Kamioka.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

The work flow of the present study. DEGs: differentially expressed genes (PDF 155 kb)

Online Resource 2

The sequences of primers (PDF 10 kb)

Online Resource 3

The complete list of DEGs of Set1 (PDF 44 kb)

Online Resource 4

The complete list of DEGs of Set2 (PDF 54 kb)

Online Resource 5

The complete list of the functional enrichment of Set1. The height of each slice represents the log2 value (fold enrichment). The radian of each slice represents the percentage of DEGs for the corresponding term to all queried DEGs; the exact percentage is shown by the label of each slice. The common terms between Set1 and Set2 are in yellow highlight (PDF 811 kb)

Online Resource 6

The complete list of the functional enrichment of Set2. The height of each slice represents the log2 value (fold enrichment). The radian of each slice represents the percentage of DEGs for the corresponding term to all queried DEGs; the exact percentage is shown by the label of each slice. The common terms between Set1 and Set2 are in yellow highlight (PDF 1456 kb)

Online Resource 7

Protein-protein interaction (PPI) network was constructed from all the 316 DEGs from both Set1 and Set2. This network contained 298 nodes and 2476 edges with enrichment p-value of <1.0×10-16 (PDF 531 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Ishihara, Y., Ishikawa, T. et al. Screening of key candidate genes and pathways for osteocytes involved in the differential response to different types of mechanical stimulation using a bioinformatics analysis. J Bone Miner Metab 37, 614–626 (2019). https://doi.org/10.1007/s00774-018-0963-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-018-0963-7

Keywords

Navigation