Skip to main content

Advertisement

Log in

Apoptotic Osteocytes and the Control of Targeted Bone Resorption

  • Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Studies from the 1950s and 1960s already recognize the fact that osteocytes, although long living cells, die, as evidenced by accumulation of osteocytic lacunae devoid of cells. More recently, it was demonstrated that these cells die by apoptosis. The rate of osteocyte apoptosis is regulated by the age of the bone, as well as by systemic hormones, local growth factors, cytokines, pharmacological agents, and mechanical forces. Apoptotic osteocytes, in turn, recruit osteoclasts to initiate targeted bone resorption. This results in the removal of “dead” bone and may improve the mechanical properties of the skeleton. However, the molecular regulators of osteocyte survival and targeted bone remodeling are not completely known. In this review, the current knowledge on the molecular mechanism that lead to osteocyte death or survival, and the signals that mediate targeted bone resorption is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bellido T. Osteocyte-driven bone remodeling. Calcif Tissue Int. 2013;94:25–34.

    Google Scholar 

  2. Noble BS, Reeve J. Osteocyte function, osteocyte death and bone fracture resistance. Mol Cell Endocrinol. 2000;159:7–13.

    Article  CAS  PubMed  Google Scholar 

  3. Frost HM. In vivo osteocyte death. J Bone Joint Surg Am. 1960;42-A:138–43.

    CAS  PubMed  Google Scholar 

  4. Almeida M, Han L, Martin-Millan M, et al. Skeletal involution by age-associated oxidative stress and its acceleration by loss of sex steroids. J Biol Chem. 2007;282:27285–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Tomkinson A, Reeve J, Shaw RW, et al. The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab. 1997;82:3128–35.

    CAS  PubMed  Google Scholar 

  6. Kousteni S, Bellido T, Plotkin LI, et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell. 2001;104:719–30.

    CAS  PubMed  Google Scholar 

  7. Weinstein RS, Jilka RL, Parfitt AM, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102:274–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Aguirre JI, Plotkin LI, Stewart SA, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss. J Bone Miner Res. 2006;21:605–15.

    Article  PubMed  Google Scholar 

  9. Morse LR, Xu Y, Solomon B, et al. Severe spinal cord injury causes immediate multi-cellular dysfunction at the chondro-osseous junction. Transl Stroke Res. 2011;2:643–50.

    Article  PubMed Central  PubMed  Google Scholar 

  10. Verborgt O, Gibson G, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J Bone Miner Res. 2000;15:60–7.

    Article  CAS  PubMed  Google Scholar 

  11. Jilka RL, Weinstein RS, Bellido T, et al. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest. 1999;104:439–46.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Plotkin LI, Weinstein RS, Parfitt AM, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest. 1999;104:1363–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Gohel A, McCarthy MB, Gronowicz G. Estrogen prevents glucocorticoid-induced apoptosis in osteoblasts in vivo and in vitro. Endocrinology. 1999;140:5339–47.

    CAS  PubMed  Google Scholar 

  14. Manolagas SC, Parfitt AM. What old means to bone. Trends Endocrinol Metab. 2010;21:369–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Jilka RL, Bellido T, Almeida M, Plotkin LI, O'Brien CA, Weinstein RS, et al. Apoptosis in bone cells. In: Bilezikian JP, Raisz LG, Martin TJ, editors. Principles of bone biology. San Diego, San Francisco, New York, London, Sydney, Tokyo: Academic Press; 2008. p. 237–61.

    Chapter  Google Scholar 

  16. Jilka RL, O'Brien CA, Roberson PK, et al. Dysapoptosis of osteoblasts and osteocytes increases cancellous bone formation but exaggerates bone porosity with age. J Bone Miner Res. 2014;29:103–17. Reports the effect of preventing osteocyte apoptosis on gene expression and bone remodeling.

  17. Weinstein RS, Nicholas RW, Manolagas SC. Apoptosis of osteocytes in glucocorticoid-induced osteonecrosis of the hip. J Clin Endocrinol Metab. 2000;85:2907–12.

    CAS  PubMed  Google Scholar 

  18. Plotkin LI, Manolagas SC, Bellido T. Glucocorticoids induce osteocyte apoptosis by blocking focal adhesion kinase-mediated survival: evidence for inside-out signaling leading to anoikis. J Biol Chem. 2007;282:24120–30.

    Article  CAS  PubMed  Google Scholar 

  19. Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci. 2002;966:73–81.

    Article  CAS  PubMed  Google Scholar 

  20. Wang FS, Lin CL, Chen YJ, et al. Secreted frizzled-related protein 1 (SFRP1) modulates glucocorticoid attenuation of osteogenic activities and bone mass. Endocrinology. 2005;146:2415–23.

    Article  CAS  PubMed  Google Scholar 

  21. Almeida M, Han L, Ambrogini E, et al. Glucocorticoids and tumor necrosis factor (TNF) alpha increase oxidative stress and suppress WNT signaling in osteoblasts. J Biol Chem. 2011;286:44326–35.

    Article  CAS  PubMed  Google Scholar 

  22. Jia J, Yao W, Guan M, et al. Glucocorticoid dose determines osteocyte cell fate. FASEB J. 2011;25:3366–76.

    Article  CAS  PubMed  Google Scholar 

  23. Weinstein RS, Wan C, Liu Q, et al. Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in 21-month-old mice. Aging Cell. 2009;9:147–61.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Noble BS, Peet N, Stevens HY, et al. Mechanical loading: biphasic osteocyte survival and the targeting of osteoclasts for bone destruction in rat cortical bone. Am J Physiol Cell Physiol. 2003;284:C934–43.

    Article  CAS  PubMed  Google Scholar 

  25. Lin C, Jiang X, Dai Z, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res. 2009;24:1651–61.

    Article  CAS  PubMed  Google Scholar 

  26. Verborgt O, Tatton NA, Majeska RJ, et al. Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation? J Bone Miner Res. 2002;17:907–14.

    Article  CAS  PubMed  Google Scholar 

  27. Bellido T, Ali AA, Plotkin LI, et al. Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem. 2003;278:50259–72.

    Article  CAS  PubMed  Google Scholar 

  28. Bivi N, Lezcano V, Romanello M, et al. Connexin43 interacts with barrestin: a prerequisite for osteoblast survival induced by parathyroid hormone. J Cell Biochem. 2011;112:2920–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Rogers MJ, Crockett JC, Coxon FP, et al. Biochemical and molecular mechanisms of action of bisphosphonates. Bone. 2011;49:34–41.

    Article  CAS  PubMed  Google Scholar 

  30. Plotkin LI, Manolagas SC, Bellido T. Transduction of cell survival signals by connexin-43 hemichannels. J Biol Chem. 2002;277:8648–57.

    Article  CAS  PubMed  Google Scholar 

  31. Plotkin LI, Lezcano V, Thostenson J, et al. Connexin 43 is required for the anti-apoptotic effect of bisphosphonates on osteocytes and osteoblasts in vivo. J Bone Miner Res. 2008;23:1712–21.

    Article  CAS  PubMed  Google Scholar 

  32. Plotkin LI, Bivi N, Bellido T. A bisphosphonate that does not affect osteoclasts prevents osteoblast and osteocyte apoptosis and the loss of bone strength induced by glucocorticoids in mice. Bone. 2011;49:122–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Plotkin LI, Aguirre JI, Kousteni S, et al. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of ERK activation. J Biol Chem. 2005;280:7317–25.

    Article  CAS  PubMed  Google Scholar 

  34. Plotkin LI, Manolagas SC, Bellido T. Dissociation of the pro-apoptotic effects of bisphosphonates on osteoclasts from their anti-apoptotic effects on osteoblasts/osteocytes with novel analogs. Bone. 2006;39:443–52.

    Article  CAS  PubMed  Google Scholar 

  35. Tomkinson A, Gevers EF, Wit JM, et al. The role of estrogen in the control of rat osteocyte apoptosis. J Bone Miner Res. 1998;13:1243–50.

    Article  CAS  PubMed  Google Scholar 

  36. Kousteni S, Chen JR, Bellido T, et al. Reversal of bone loss in mice by nongenotropic signaling of sex steroids. Science. 2002;298:843–6.

    Article  CAS  PubMed  Google Scholar 

  37. Huber C, Collishaw S, Mosley JR, et al. Selective estrogen receptor modulator inhibits osteocyte apoptosis during abrupt estrogen withdrawal: implications for bone quality maintenance. Calcif Tissue Int. 2007;81:139–44.

    Article  CAS  PubMed  Google Scholar 

  38. Kousteni S, Han L, Chen JR, et al. Kinase-mediated regulation of common transcription factors accounts for the bone-protective effects of sex steroids. J Clin Invest. 2003;111:1651–64.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. van Essen HW, Holzmann PJ, Blankenstein MA, et al. Effect of raloxifene treatment on osteocyte apoptosis in postmenopausal women. Calcif Tissue Int. 2007;81:183–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Plotkin LI, Mathov I, Aguirre JI, et al. Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases, and ERKs. Am J Physiol Cell Physiol. 2005;289:C633–43.

    Article  CAS  PubMed  Google Scholar 

  41. Aguirre JI, Plotkin LI, Gortazar AR, et al. A novel ligand-independent function of the estrogen receptor is essential for osteocyte and osteoblast mechanotransduction. J Biol Chem. 2007;282:25501–8.

    Article  CAS  PubMed  Google Scholar 

  42. Kitase Y, Barragan L, Jiang JX, et al. Mechanical induction of PGE(2) in osteocytes blocks glucocorticoid induced apoptosis through both the beta-catenin and PKA pathways. J Bone Miner Res. 2010;25:2657–68.

    Article  PubMed  Google Scholar 

  43. Frost HM. Bone's mechanostat: a 2003 update. Anat Rec. 2003;275A:1081–101.

    Article  Google Scholar 

  44. Noble BS, Stevens H, Loveridge N, et al. Identification of apoptotic changes in osteocytes in normal and pathological human bone. Bone. 1997;20:273–82.

    Article  CAS  PubMed  Google Scholar 

  45. Elmardi AS, Katchburian MV, Katchburian E. Electron microscopy of developing calvaria reveals images that suggest that osteoclasts engulf and destroy osteocytes during bone resorption. Calcif Tissue Int. 1990;46:239–45.

    Article  CAS  PubMed  Google Scholar 

  46. Boabaid F, Cerri PS, Katchburian E. Apoptotic bone cells may be engulfed by osteoclasts during alveolar bone resorption in young rats. Tissue Cell. 2001;33:318–25.

    Article  CAS  PubMed  Google Scholar 

  47. Cerri PS, Boabaid F, Katchburian E. Combined TUNEL and TRAP methods suggest that apoptotic bone cells are inside vacuoles of alveolar bone osteoclasts in young rats. J Periodontal Res. 2003;38:223–6.

    Article  CAS  PubMed  Google Scholar 

  48. Cardoso L, Herman BC, Verborgt O, et al. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res. 2009;24:597–605.

    Article  CAS  PubMed  Google Scholar 

  49. Emerton KB, Hu B, Woo AA, et al. Osteocyte apoptosis and control of bone resorption following ovariectomy in mice. Bone. 2009;46:577–83.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Tatsumi S, Ishii K, Amizuka N, et al. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007;5:464–75.

    Article  CAS  PubMed  Google Scholar 

  51. Bivi N, Condon KW, Allen MR, et al. Cell autonomous requirement of connexin 43 for osteocyte survival: consequences for endocortical resorption and periosteal bone formation. J Bone Miner Res. 2012;27:374–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Lloyd SA, Loiselle AE, Zhang Y, et al. Connexin 43 deficiency desensitizes bone to the effects of mechanical unloading through modulation of both arms of bone remodeling. Bone. 2013;57:76–83.

    Article  CAS  PubMed  Google Scholar 

  53. Schaffler MB, Cheung WY, Majeska R, et al. Osteocytes: master orchestrators of bone. Calcif Tissue Int. 2013;94:5–24.

    Google Scholar 

  54. Kennedy OD, Herman BC, Laudier DM, et al. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50:1115–22. Reports the temporal relationships between injury, osteocyte apoptosis, and pro-osteoclastogenic signaling following excess loading.

  55. Wu AC, Morrison NA, Kelly WL, et al. MCP-1 expression is specifically regulated during activation of skeletal repair and remodeling. Calcif Tissue Int. 2013;92:566–75.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Y, Paul EM, Sathyendra V, et al. Enhanced osteoclastic resorption and responsiveness to mechanical load in gap junction deficient bone. PLoS One. 2011;6:e23516.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Kogianni G, Mann V, Noble BS. Apoptotic bodies convey activity capable of initiating osteoclastogenesis and localized bone destruction. J Bone Miner Res. 2008;23:915–27.

    Article  PubMed  Google Scholar 

  58. Yang J, Shah R, Robling AG, et al. HMGB1 is a bone-active cytokine. J Cell Physiol. 2008;214:730–9.

    Article  CAS  PubMed  Google Scholar 

  59. Klune JR, Dhupar R, Cardinal J, et al. HMGB1: endogenous danger signaling. Mol Med. 2008;14:476–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Zhou Z, Han JY, Xi CX, et al. HMGB1 regulates RANKL-induced osteoclastogenesis in a manner dependent on RAGE. J Bone Miner Res. 2008;23:1084–96.

    Article  CAS  PubMed  Google Scholar 

  61. Taniguchi N, Yoshida K, Ito T, et al. Stage-specific secretion of HMGB1 in cartilage regulates endochondral ossification. Mol Cell Biol. 2007;27:5650–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

This research was supported by National Institutes of Health (R01-AR053643) and by a Biomedical Research Grant and a Developing Diverse Researchers with InVestigative Expertise (DRIVE) Grant from Indiana University School of Medicine.

Compliance with Ethics Guidelines

Conflict of Interest

L.I. Plotkin declares that she has no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by L. I. Plotkin involving murine samples were performed after approval by the Institutional Animal Care and Use Committees of University of Arkansas for Medical Sciences and Indiana University School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilian I. Plotkin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plotkin, L.I. Apoptotic Osteocytes and the Control of Targeted Bone Resorption. Curr Osteoporos Rep 12, 121–126 (2014). https://doi.org/10.1007/s11914-014-0194-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0194-3

Keywords

Navigation