Skip to main content
Log in

Secondary-Phase Formation in Spinel-Type LiMn2O4-Cathode Materials for Lithium-Ion Batteries: Quantifying Trace Amounts of Li2MnO3 by Electron Paramagnetic Resonance Spectroscopy

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Spinel-type lithium manganese oxides are considered as promising cathode materials for lithium-ion batteries. Trace amounts of Li2MnO3 usually occur as a secondary phase in lithium-manganese spinels in the common high-temperature, solid-state synthesis, affecting the overall Li–Mn stoichiometry in the spinel phase and thereby the electrochemical performance. However, the formation of Li2MnO3 lower than 1 wt.% can hardly be quantified by the conventional analytical techniques. In this work, we synthesized lithium-manganese spinels with different Li/Mn molar ratios and demonstrate that electron paramagnetic resonance (EPR) enables quantifying trace amounts of Li2MnO3 below 10−2 wt.% in the synthesized products. The results reveal that the formation of Li2MnO3 secondary phase is favored by lithium excess in the synthesis. Based on the quantitative evaluation of the EPR data, precise determining Li–Mn stoichiometry in the spinel phase in Li1+xMn2−xO4 materials can be assessed. Accordingly, it is possible to estimate the amount of lithium on 16d-sites in the Li-rich manganese spinels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.E. Blomgren, J. Electrochem. Soc. 164, A5019 (2017)

    Article  Google Scholar 

  2. M.S. Whittingham, Chem. Rev. 104, 4271 (2004)

    Article  Google Scholar 

  3. M.M. Thackeray, W.I.F. David, P.G. Bruce, J.B. Goodenough, Mater. Res. Bull. 18, 461 (1983)

    Article  Google Scholar 

  4. M.M. Doeff, in Encyclopedia of Sustainability Science and Technology, (Springer, New York, 2012), pp. 708–739

  5. B.L. Ellis, K.T. Lee, L.F. Nazar, Chem. Mater. 22, 691 (2010)

    Article  Google Scholar 

  6. M.M. Thackeray, Prog. Solid State Chem. 25, 1 (1997)

    Article  Google Scholar 

  7. R. Gummow, A. De Kock, M. Thackeray, Solid State Ionics 69, 59 (1994)

    Article  Google Scholar 

  8. M. Bianchini, E. Suard, L. Croguennec, C. Masquelier, J. Phys. Chem. C 118, 25947 (2014)

    Article  Google Scholar 

  9. G. Amatucci, J.-M. Tarascon, J. Electrochem. Soc. 149, K31 (2002)

    Article  Google Scholar 

  10. C. Masquelier, M. Tabuchi, K. Ado, R. Kanno, Y. Kobayashi, Y. Maki, O. Nakamura, J.B. Goodenough, J. Solid State Chem. 266, 255 (1996)

    Article  ADS  Google Scholar 

  11. D.Y.W. Yu, K. Yanagida, Y. Kato, H. Nakamura, J. Electrochem. Soc. 156, A417 (2009)

    Article  Google Scholar 

  12. V. Massarotti, J. Solid State Chem. 128, 80 (1997)

    Article  ADS  Google Scholar 

  13. G. Jain, J. Yang, M. Balasubramanian, J.J. Xu, Chem. Mater. 17, 3850 (2005)

    Article  Google Scholar 

  14. C.S. Johnson, N. Li, J.T. Vaughey, S.A. Hackney, M.M. Thackeray, Electrochem. Commun. 7, 528 (2005)

    Article  Google Scholar 

  15. S. Ivanova, E. Zhecheva, D. Nihtianova, M. Mladenov, R. Stoyanova, J. Alloys Compd. 561, 252 (2013)

    Article  Google Scholar 

  16. S.F. Amalraj, D. Sharon, M. Talianker, C.M. Julien, L. Burlaka, R. Lavi, E. Zhecheva, B. Markovsky, E. Zinigrad, D. Kovacheva, R. Stoyanova, D. Aurbach, Electrochim. Acta 97, 259 (2013)

    Article  Google Scholar 

  17. E. Erdem, V. Mass, A. Gembus, A. Schulz, V. Liebau-Kunzmann, C. Fasel, R. Riedel, R.-A. Eichel, Phys. Chem. Chem. Phys. 11, 5628 (2009)

    Article  Google Scholar 

  18. P. Jakes, E. Erdem, A. Ozarowski, J. van Tol, R. Buckan, D. Mikhailova, H. Ehrenberg, R.-A. Eichel, Phys. Chem. Chem. Phys. 13, 9344 (2011)

    Article  Google Scholar 

  19. R.-A.E.P. Jakes, J. Granwehr, H. Kungl, Z. Phys. Chem. 229, 1439 (2015)

    Article  Google Scholar 

  20. P. Jakes, L. Kröll, A. Ozarowski, J. van Tol, D. Mikhailova, H. Ehrenberg, R.-A. Eichel, Z. Phys. Chem. 231, 905 (2017)

    Article  Google Scholar 

  21. P. Jakes, G. Cohn, Y. Ein-Eli, F. Scheiba, H. Ehrenberg, R.-A. Eichel, ChemSusChem 5, 2278 (2012)

    Article  Google Scholar 

  22. J. Wandt, C. Marino, H.A. Gasteiger, P. Jakes, R.-A. Eichel, J. Granwehr, Energy Environ. Sci. 8, 1358 (2015)

    Article  Google Scholar 

  23. A. Niemöller, P. Jakes, S. Kayser, Y. Lin, W. Lehnert, J. Granwehr, J. Magn. Reson. 269, 157 (2016)

    Article  ADS  Google Scholar 

  24. J. Wandt, P. Jakes, J. Granwehr, H.A. Gasteiger, R.A. Eichel, Angew. Chem. Int. Ed. 128, 7006 (2016)

    Article  Google Scholar 

  25. A. Niemöller, P. Jakes, S. Eurich, A. Paulus, H. Kungl, J. Chem. Phys. 148, 14705 (2018)

    Article  Google Scholar 

  26. S. Mandal, R.M. Rojas, J.M. Amarilla, P. Calle, N.V. Kosova, V.F. Anufrienko, J.M. Rojo, Chem. Mater. 14, 1598 (2002)

    Article  Google Scholar 

  27. M. Kopeć, J.R. Dygas, F. Krok, A. Mauger, F. Gendron, B. Jaszczak-Figiel, A. Gagor, K. Zaghib, C.M. Julien, Chem. Mater. 21, 2525 (2009)

    Article  Google Scholar 

  28. R.K. Stoyanova, E.N. Zhecheva, M.Y. Gorova, J. Mater. Chem. 10, 1377 (2000)

    Article  Google Scholar 

  29. E. Zhecheva, R. Stoyanova, Solid State Commun. 135, 405 (2005)

    Article  ADS  Google Scholar 

  30. P.W. Anderson, P.R. Weiss, Rev. Mod. Phys. 25, 269 (1953)

    Article  ADS  Google Scholar 

  31. M.M. Thackeray, J. Electrochem. Soc. 139, 363 (1992)

    Article  Google Scholar 

  32. D. Capsoni, M. Bini, G. Chiodelli, V. Massarotti, M.C. Mozzati, C.B. Azzoni, Solid State Commun. 125, 179 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from the German Federal Ministry of Education and Research (BMBF-project DESIREE, Grant no. 03SF0477A). S.Y. and U.S. furthermore acknowledge financial support by the research training group “MobilEM” funded by the German Research Foundation. In addition, we thank Prof. Josef Granwehr for the vivid discussion about this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruoheng Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Jakes, P., Eurich, S. et al. Secondary-Phase Formation in Spinel-Type LiMn2O4-Cathode Materials for Lithium-Ion Batteries: Quantifying Trace Amounts of Li2MnO3 by Electron Paramagnetic Resonance Spectroscopy. Appl Magn Reson 49, 415–427 (2018). https://doi.org/10.1007/s00723-018-0983-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-0983-4

Navigation