Skip to main content
Log in

A First-Principles Study on the Structure and Electronic Structure of Ti-Doped Spinel LiMn2O4 for Li-Ion Batteries

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

In this work, a systematic theoretical study on Ti-doped LiMn2O4 is performed to investigate their structure and electrochemical properties based on spin-polarized GGA + U calculations. The findings show that the dopant Ti exists in the form of a tetravalent valence cation in the doping system, which can stabilize the spinel framework, increase the volume of the unit cell, facilitate the diffusion of lithium ions and enhance intercalation voltage. This study gives an insight into the microscopic mechanism of Ti-doping to enhance the performance of LiMn2O4 as a cathode material and promotes the development of lithium-ion power batteries based on LiMn2O4.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.B. Goodenough, and K.S. Park, The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135, 1167–1176 (2013).

    Article  CAS  Google Scholar 

  2. J.B. Goodenough, and Y. Kim, Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    Article  CAS  Google Scholar 

  3. Q. Liu, X. Su, D. Lei, Y. Qin, J.G. Wen, F.M. Guo, Y.A. Wu, Y.C. Rong, R.H. Kou, X.H. Xiao, F. Aguesse, J. Bareño, Y. Ren, W.Q. Lu, and Y.X. Li, Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 3, 936–943 (2018).

    Article  CAS  Google Scholar 

  4. S.Q. Shi, C.Y. Ouyang, M.S. Lei, and W.H. Tang, Effect of Mg-doping on the structural and electronic properties of LiCoO2: a first-principles investigation. J. Power Sources 171, 908–912 (2007).

    Article  CAS  Google Scholar 

  5. C.Y. Ouyang, S.Q. Shi, Z.X. Wang, X.J. Huang, and L.Q. Chen, First-principles study of Li ion diffusion in LiFePO4. Phys. Rev. B 69, 104303 (2004).

    Article  Google Scholar 

  6. S.Q. Shi, L.J. Liu, C.Y. Ouyang, D.S. Wang, Z.X. Wang, L.Q. Chen, and X.J. Huang, Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys. Rev. B 68, 195108 (2003).

    Article  Google Scholar 

  7. Y.H. Chen, J. Zhang, Y. Li, Y.F. Zhang, S.P. Huang, W. Lin, and W.K. Chen, Effects of doping high-valence transition metal (V, Nb and Zr) ions on the structure and electrochemical performance of LIB cathode material LiNi0.8Co0.1Mn0.1O2. Phys. Chem. Chem. Phys. 23, 11528–11537 (2021).

    Article  CAS  Google Scholar 

  8. C.Y. Ouyang, S.Q. Shi, and M.S. Lei, Jahn–Teller distortion and electronic structure of LiMn2O4. J. Alloys Comp. 474, 370–374 (2009).

    Article  CAS  Google Scholar 

  9. C.Y. Ouyang, Z. Sljivancanin, and A. Baldereschi, Transition from Mn4+ to Mn3+ induced by surface reconstruction at lambda-MnO2(001). J. Chem. Phys. 133, 204701 (2010).

    Article  CAS  Google Scholar 

  10. C.Y. Ouyang, S.Q. Shi, Z.X. Wang, H. Li, X.J. Huang, and L.Q. Chen, Ab initio molecular-dynamics studies on LixMn2O4 as cathode material for lithium secondary batteriesxMn2O4 as cathode material for lithium secondary batteries. Europhys. Lett. 67, 28–34 (2004).

    Article  CAS  Google Scholar 

  11. G.E. Grechnev, R. Ahuja, B. Johansson, and O. Eriksson, Electronic structure, magnetic, and cohesive properties of LixMn2O4: theory. Phys. Rev. B 65, 174408 (2002).

    Article  Google Scholar 

  12. K. Leung, First-principles modeling of Mn(II) migration above and dissolution from LixMn2O4(001) surfaces. Chem. Mater. 29, 2550–2562 (2016).

    Article  Google Scholar 

  13. W. Xu, H. Li, Y. Zheng, W. Lei, Z. Wang, Y. Cheng, R. Qi, H. Peng, H. Lin, F. Yue, and R. Huang, Atomic insights into Ti doping on the stability enhancement of truncated octahedron LiMn2O4 nanoparticles. Nanomaterials 11, 508 (2021).

    Article  CAS  Google Scholar 

  14. K.W. Kim, S.W. Lee, K.S. Han, H.J. Chung, and S.I. Woo, Characterization of Al-doped spinel LiMn2O4 thin film cathode electrodes prepared by liquid source misted chemical deposition (LSMCD) technique. Electrochim. Acta 48, 4223–4231 (2003).

    Article  CAS  Google Scholar 

  15. Z.F. Zhang, Z.L. Chen, G.J. Wang, H. Ren, M. Pan, L.L. Xiao, K.C. Wu, L.T. Zhao, J.Q. Yang, Q.G. Wu, J. Shu, D.J. Wang, H.L. Zhang, N. Huo, and J. Li, Dual-doping to suppress cracking in spinel LiMn2O4: a joint theoretical and experimental study. Phys. Chem. Chem. Phys. 18, 6893–6900 (2016).

    Article  CAS  Google Scholar 

  16. L.L. Xiong, Y.L. Xu, C. Zhang, Z.W. Zhang, and J.B. Li, Electrochemical properties of tetravalent Ti-doped spinel LiMn2O4. J. Solid State Electr. 15, 1263–1269 (2010).

    Article  Google Scholar 

  17. L.L. Xiong, Y.L. Xu, T. Tao, and J.B. Goodenough, Synthesis and electrochemical characterization of multi-cations doped spinel LiMn2O4 used for lithium ion batteries. J. Power Sources 199, 214–219 (2012).

    Article  CAS  Google Scholar 

  18. Q.S. Tong, Y. Yang, J.C. Shi, J.M. Yan, and L.Q. Zheng, Synthesis and storage performance of the doped LiMn2O4 spinel. J. Electrochem. Soc. 154, A656–A667 (2007).

    Article  CAS  Google Scholar 

  19. B.J. Morgan, and G.W. Watson, A DFT+U description of oxygen vacancies at the TiO2 rutile (110) surface. Surf. Sci. 601, 5034–5041 (2007).

    Article  CAS  Google Scholar 

  20. S.Q. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, W.W. Ju, C.Y. Ouyang, and R.J. Xiao, Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin. Phys. B 25, 018212 (2016).

    Article  Google Scholar 

  21. W. Hu, H.W. Wang, W.W. Luo, B. Xu, and C.Y. Ouyang, Formation and thermodynamic stability of oxygen vacancies in typical cathode materials for Li-ion batteries: density functional theory study. Solid State Ionics 347, 115257 (2020).

    Article  CAS  Google Scholar 

  22. P. Xiao, Z.Q. Deng, A. Manthiram, and G. Henkelman, Calculations of oxygen stability in lithium-rich layered cathodes. J. Phys. Chem. C 116, 23201–23204 (2012).

    Article  CAS  Google Scholar 

  23. Y.J. Wei, X.G. Xu, C.Z. Wang, C. Li, G. Chen, and F. Wu, Electronic structure of cubic Li(Fe0.1Mn1.9)O4 studied with Mössbauer spectroscopy and first-principles calculation. Appl. Phys. Lett. 83, 1791–1793 (2003).

    Article  CAS  Google Scholar 

  24. K. Kushida, and K. Kuriyama, Observation of the crystal-field splitting related to the Mn-3d bands in spinel-LiMn2O4 films by optical absorption. Appl. Phys. Lett. 77, 4154–4156 (2000).

    Article  CAS  Google Scholar 

  25. J. Rodrıguez-Carvajal, G. Rousse, C. Masquelier, and M. Hervieu, Electronic crystallization in a Lithium battery material: Columnar ordering of electrons and holes in the spinel LiMn2O4. Phys. Rev. Lett. 81, 4660–4663 (1998).

    Article  Google Scholar 

  26. W. Hu, W.W. Luo, H.W. Wang, and C.Y. Ouyang, Adsorption of propylene carbonate (PC) on the LiMn2O4 (100) surface investigated by DFT+U calculations. Chin. Phys. B 30, 038202 (2020).

    Article  Google Scholar 

  27. J.M. Tarascon, W.R. McKinnon, F. Coowar, T.N. Bowmer, G. Amatucci, and D. Guyomard, Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn2O4. J. Electrochem. Soc. 141, 1421–1431 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Teaching Research and Teaching Reform Project of Jiangxi University of Technology (JG1905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Hu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., lv, L., Dai, Y. et al. A First-Principles Study on the Structure and Electronic Structure of Ti-Doped Spinel LiMn2O4 for Li-Ion Batteries. J. Electron. Mater. 51, 77–83 (2022). https://doi.org/10.1007/s11664-021-09293-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09293-w

Keywords

Navigation