Skip to main content
Log in

Solid-State Synthesis of Na and Al Co-doped Lithium Manganese Spinel Cathode Material

  • COLLOID CHEMISTRY AND ELECTROCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this study, LMO-xNa and LNMO-yAl were synthesized by a simple high-temperature solid-phase method. MnO2, Li2CO3, NaOH, and Al2O3 were used as manganese source, lithium source, sodium source and aluminum source, respectively. The effects of Na doping and Na, Al co-doping on the electrochemical performance and crystal structure of spinel LiMn2O4 materials were explored, and the crystal parameters and cycle performance of the co-doped materials were discussed emphatically. Through the discussion of SEM, XRD, EIS curve, cycle curve and the performance of the first charge and discharge cycle, it was concluded that when the Na doping ratio x = 0.15 and the Al doping ratio y = 0.10, the reversible cycle capacity of the material maintained is as high as 95%, and the first discharge capacity reaches 125.5 m Ah g–1. It can be seen that the Na, Al co-doped LNMO-yAl not only maintains a certain discharge capacity and has a higher capacity retention rate, it is a promising cathode material for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. L. Tian, J. Chem. Ind. 36, 31 (2018). https://doi.org/10.3969/j.issn.1673-9647.2018.06.007

    Article  Google Scholar 

  2. W. Tang, Y. Hou, F. Wang, et al., J. Nano Lett. 13, 2036 (2013). https://doi.org/10.1021/nl400199

    Article  CAS  Google Scholar 

  3. S. Huang, Z. Wen, J. Zhang, et al., Solid State Ionics 177, 851 (2006). https://doi.org/10.1016/j.ssi.2006.01.050

    Article  CAS  Google Scholar 

  4. R. Dominko, M. Gaberscek, M. Bele, et al., J. Eur. Ceram. Soc. 27, 909 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.133

    Article  CAS  Google Scholar 

  5. H. Liu, Y. Feng, K. Wang, et al., J. Phys. Chem. Solids 69, 2037 (2008). https://doi.org/10.1016/j.jpcs.2008.02.017

    Article  CAS  Google Scholar 

  6. J. Huang and Z. Jiang, J. Electrochim. Acta 53, 7756 (2008). https://doi.org/10.1016/j.electacta.2008.05.03

    Article  CAS  Google Scholar 

  7. L. Yang and L. Gao, J. Alloys Compd. 485, 93 (2009). https://doi.org/10.1016/j.jallcom.2009.05.151

    Article  CAS  Google Scholar 

  8. J. Wolfenstine, U. Lee, and J. L. Allen, J. Power Sources 154, 287 (2006). https://doi.org/10.1016/j.jpowsour.2005.12.044

    Article  CAS  Google Scholar 

  9. T. Paulos, G. Haftu, V. Veeraiah, et al., J. Korean Phys. Soc. 76, 940 (2020). https://doi.org/10.3938/jkps.76.940

    Article  CAS  Google Scholar 

  10. C. Y. Zhu, J. X. Liu, X. H. Yu, Y. J. Zhang, et al., J. Ceram. Int. 06, 187 (2019). https://doi.org/10.1016/j.ceramint.2019.06.187

    Article  CAS  Google Scholar 

  11. S. Bhuvaneswari, U. V. Varadaraju, and R. Gopalan, J. Electrochim. Acta 301, 342 (2019). https://doi.org/10.1016/j.electacta.2019.01.174

    Article  CAS  Google Scholar 

  12. J. B. Jiang, W. Li, H. J. Deng, et al., J. Nanosci. Nanotechnol. 19, 125 (2019). https://doi.org/10.1166/jnn.2019.16386

    Article  CAS  PubMed  Google Scholar 

  13. Y. H. Hou, K. Chang, H. W. Tang, et al., Electrochim. Acta 319, 587 (2019). https://doi.org/10.1016/j.electacta.2019.07.016

    Article  CAS  Google Scholar 

  14. H. Y. Zhao, Y. F. Nie, D. Y. Que, et al., Materials 2807, 17 (2019). https://doi.org/10.3390/ma12172807

    Article  CAS  Google Scholar 

  15. G. Li, X. Chen, Y. L. Yu, B. Zhang, and W. S. Yang, J. Solid State Electron. 22, 3099 (2018). http://dx.chinadoi.cn/10.1007/s10008-018-4016-x

    Article  CAS  Google Scholar 

  16. W. Zhang, X. L. Sun, Y. X. Tang, et al., J. Am. Chem. Soc. 141, 14038 (2019). https://doi.org/10.1021/jacs.9b05531

    Article  CAS  PubMed  Google Scholar 

  17. M. Michalska, D. A. Złkowska, J. B. Jasinskib, et al., J. Electrochim. Acta 276, 37 (2018). https://doi.org/10.1016/j.electacta.2018.04.165

    Article  CAS  Google Scholar 

  18. S. M. Wang, H. L. Liu, M. W. Xiang, et al., J. New J. Chem. 44, 10569 (2020). https://doi.org/10.1039/D0NJ01290D

    Article  CAS  Google Scholar 

  19. K. Chudzika, M. Świětosławski, M. Bakierska, et al., J. Appl. Surf. Sci. 147138, 531 (2020). https://doi.org/10.1016/j.apsusc.2020.147138

    Article  CAS  Google Scholar 

  20. M. Bakierska, M. Świětosławski, K. Chudzik, et al., Solid State Ionics 317, 190 (2018). https://doi.org/10.1016/j.ssi.2018.01.014

    Article  CAS  Google Scholar 

  21. Z. R. Yang, Y. J. Wang, X. C. Chen, et al., Chem. Sel. 4, 9583 (2019). https://doi.org/10.1002/slct.201902685

    Article  CAS  Google Scholar 

  22. Y. N. Zhang, Y. J. Zhang, M. Y. Zhang, et al., J. Mater. 71, 608 (2019). https://doi.org/10.1007/s11837-018-2873-5

    Article  CAS  Google Scholar 

  23. C. Z. Fei, M. Y. Zhou, and H. X. Ning, J. Energy Storage 101036, 27 (2020). https://doi.org/10.1016/j.est.2019.101036

    Article  Google Scholar 

  24. M. J. Lindsay, J. X. Wang, and H. K. Liu, J. Power Sources 119–121, 84 (2003). https://doi.org/10.1016/S0378-7753(03)00130-7

    Article  CAS  Google Scholar 

  25. Y. Hamon, T. Brousse, F. Jousse, et al., J. Power Sources 97, 185 (2001). https://doi.org/10.1016/S0378-7753(01)00616-4

    Article  Google Scholar 

  26. T. Kakuda, K. Uematsu, K. Toda, and M. Sato, J. Power Sources 167, 499 (2007). https://doi.org/10.1016/j.jpowsour.2007.01.035

    Article  CAS  Google Scholar 

  27. M. A. Kebede, M. J. Phasha, et al., J. Sustain. Energy Technol. 5, 4 (2014). https://doi.org/10.1016/j.seta.2013.11.005

    Article  Google Scholar 

  28. Y. S. Lee, N. Kumada, and M. Yoshio, J. Power Sources 96, 376 (2001). https://doi.org/10.1016/S0378-7753(00)00652-2

    Article  CAS  Google Scholar 

  29. T. Yi, X. Hu, and K. Gao, J. Power Sources 162, 636 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.019

    Article  CAS  Google Scholar 

  30. L. Xiao, Y. Zhao, Y. Yang, Y. Cao, et al., Electrochim. Acta 54, 545 (2008). https://doi.org/10.1016/j.electacta.2008.07.037

    Article  CAS  Google Scholar 

  31. A. B. Yuan, L. Tian, W. M. Xu, and Y. Q. Wang, J. Power Sources 195, 5032 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.074

    Article  CAS  Google Scholar 

  32. H. W. Xiao, Y. R. Wang, K. Xie, et al., J. Alloys Compd. 738, 25 (2018). https://doi.org/10.1016/j.jallcom.2017.12.143

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-cai Shao.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Zy., Liu, X. & Shao, Zc. Solid-State Synthesis of Na and Al Co-doped Lithium Manganese Spinel Cathode Material. Russ. J. Phys. Chem. 96 (Suppl 1), S183–S189 (2022). https://doi.org/10.1134/S0036024422140321

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422140321

Keywords:

Navigation