Skip to main content
Log in

Constant electric bias dependence of wave propagation in a rotating piezoelectric crystal

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Main theoretical results concerning bulk piezoelectric wave propagation subjected to the action of electric bias and rotation are presented, in which the higher-order tensors of piezoelectric, elastic, dielectric and electrostrictive constants are necessary. Some calculations for lithium niobate are performed revealing that the application of electric bias and rotation has considerable influence on the wave dispersion parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cho, Y., Yamanouchi, K.: Nonlinear, elastic, piezoelectric, electric, and dielectric constants of lithium niobate. J. Appl. Phys. 61, 875–887 (1987)

    Article  Google Scholar 

  2. Ballantine, D.S., Martin, S.J., Ricco, A.J., Frye, G.C., Wohltjen, H., White, R.M., Zellers, E.T.: Practical aspects of acoustic-wave sensors, chapter 6. In: Ballantine, D.S., Martin, S.J., Ricco, A.J., Frye, G.C., Wohltjen, H., White, R.M., Zellers, E.T. (eds.) Acoustic Wave Sensors, pp. 331–395. Academic Press, Burlington (1997)

    Chapter  Google Scholar 

  3. Yuan, X., Kuang, Z.: The inhomogeneous waves in pyroelectrics. J. Therm. Stress. 33, 172–186 (2010)

    Article  Google Scholar 

  4. Yuan, X.: The energy process of pyroelectric medium. J. Therm. Stress. 33, 413–426 (2010)

    Article  Google Scholar 

  5. Kuang, Z.B., Yuan, X.: Reflection and transmission of waves in pyroelectric and piezoelectric materials. J. Sound Vib. 330, 1111–1120 (2011)

    Article  Google Scholar 

  6. Yuan, X., Zhu, Z.H.: Reflection and refraction of plane waves at interface between two piezoelectric media. Acta Mech. 223, 2509–2521 (2012)

    Article  MathSciNet  Google Scholar 

  7. Tiersten, H.F.: On the accurate description of piezoelectric resonators subject to biasing deformations. Int. J. Eng. Sci. 33, 2239–2259 (1995)

    Article  MathSciNet  Google Scholar 

  8. Hu, Y.T., Yang, J.S., Jiang, Q.: On modeling of extension and flexure response of electroelastic shells under biasing fields. Acta Mech. 156, 163–178 (2002)

    Article  Google Scholar 

  9. Yang, J., Hu, Y.: Mechanics of electroelastic bodies under biasing fields. Appl. Mech. Rev. 57, 173–189 (2004)

    Article  Google Scholar 

  10. Tashiro, S., Tokunaga, W., Ishii, K., Nagata, K.: Direct current-bias dependence of nonlinear coefficients in lead zirconate titanate piezoelectric ceramics. J. Ceram. Soc. Jpn. 113, 642–646 (2005)

    Article  Google Scholar 

  11. Sorokin, B., Burkovj, S., Aleksandrov, K., Karpovich, A.: Reflection and refraction of bulk acoustic waves in piezoelectric crystals under the action of bias electric field and uniaxial pressure. In: Ultrasonics Symposium, 2008. IUS, 2008, pp. 2161–2164 (2008)

  12. Tsurumi, T.: Frequency and field-intensity dependence of dielectric and piezoelectric responses of oxide ferroelectrics: description of nonlinear response and dissipation effect in piezoelectric fundamental equations. In: Proceedings of Symposium on Ultrasonic Electronics, vol. 34, pp. 365–366 (2013)

  13. Kuang, Z.-B.: Electroelastic wave. In: Kuang, Z.-B. (ed.) Theory of Electroelasticity, pp. 265–337. Springer, Berlin (2014)

    Chapter  Google Scholar 

  14. Huston, R.L.: Wave propagation in rotating elastic media. AIAA J. 2, 575–576 (1964)

    Article  MathSciNet  Google Scholar 

  15. Huston, R.L.: In-plane vibration of spinning disks. AIAA J. 3, 1519–1520 (1965)

    Article  Google Scholar 

  16. Schoenbe, M., Censor, D.: Elastic-waves in rotating media. Q. Appl. Math. 31, 115–125 (1973)

    Article  Google Scholar 

  17. Bera, R.K.: Propagation of waves in random rotating infinite magneto-thermo-visco-elastic medium. Comput. Math. Appl. 36, 85–102 (1998)

    Article  MathSciNet  Google Scholar 

  18. Wauer, J.: Waves in rotating conducting piezoelectric media. J. Acoust. Soc. Am. 106, 626–636 (1999)

    Article  Google Scholar 

  19. Destrade, M., Saccomandi, G.: Some results on finite amplitude elastic waves propagating in rotating media. Acta Mech. 173, 19–31 (2004)

    Article  Google Scholar 

  20. Auriault, J.L.: Body wave propagation in rotating elastic media. Mech. Res. Commun. 31, 21–27 (2004)

    Article  MathSciNet  Google Scholar 

  21. Ting, T.C.T.: Surface waves in a rotating anisotropic elastic half-space. Wave Motion 40, 329–346 (2004)

    Article  MathSciNet  Google Scholar 

  22. Jiashi, Y.: A review of analyses related to vibrations of rotating piezoelectric bodies and gyroscopes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 698–706 (2005)

    Article  Google Scholar 

  23. Singh, J., Tomar, S.K.: Plane waves in a rotating micropolar porous elastic solid. J. Appl. Phys. 102, 074906–074907 (2007)

    Article  Google Scholar 

  24. Yuan, X., Li, L.: Waves in a rotating pyroelectric body. J. Therm. Stress. 38, 399–414 (2015)

    Article  Google Scholar 

  25. Walia, V., Sharma, J.N., Sharma, P.K.: Propagation characteristics of thermoelastic waves in piezoelectric (6 mm class) rotating plate. Eur. J. Mech. A Solids 28, 569–581 (2009)

    Article  Google Scholar 

  26. Sharma, J.N., Grover, D.: Body wave propagation in rotating thermoelastic media. Mech. Res. Commun. 36, 715–721 (2009)

    Article  Google Scholar 

  27. Kumar, R.: Effect of rotation in magneto-micropolar thermoelastic medium due to mechanical and thermal sources. Chaos Solitons Fractals 41, 1619–1633 (2009)

    Article  MathSciNet  Google Scholar 

  28. Biryukov, S.V., Schmidt, H., Weihnacht, M.: Gyroscopic effect for SAW in common piezoelectric crystals. In: Yuhas, M.P. (ed.) IEEE International Ultrasonics Symposium (IUS), IEEE, Roma, 2009, pp. 2133–2136 (2009)

  29. Sharma, J.N., Grover, D., Kaur, D.: Mathematical modelling and analysis of bulk waves in rotating generalized thermoelastic media with voids. Appl. Math. Model. 35, 3396–3407 (2011)

    Article  MathSciNet  Google Scholar 

  30. Wegert, H., Reindl, L.M., Ruile, W., Mayer, A.P.: On the Coriolis effect in acoustic waveguides. J. Acoust. Soc. Am. 131, 3794–3801 (2012)

    Article  Google Scholar 

  31. Prasad, R., Mukhopadhyay, S.: Effects of rotation on harmonic plane waves under two-temperature thermoelasticity. J. Therm. Stress. 35, 1037–1055 (2012)

    Article  Google Scholar 

  32. Abd-Alla, A.M., Yahya, G.A.: Thermal stresses in infinite circular cylinder subjected to rotation. Appl. Math. Mech. Engl. Ed. 33, 1059–1078 (2012)

    Article  MathSciNet  Google Scholar 

  33. Yuan, X., Li, L.: Wave reflection and refraction in rotating and initially-stressed piezoelectric crystals. Acta Mech. 226, 3243–3261 (2015)

    Article  MathSciNet  Google Scholar 

  34. Yuan, X.: Effects of rotation and initial stresses on pyroelectric waves. Arch. Appl. Mech. 86, 433–444 (2016)

    Article  Google Scholar 

  35. Yuan, X., Jiang, Q., Yang, F.: Wave reflection and transmission in rotating and stressed pyroelectric half-planes. Appl. Math. Comput. 289, 281–297 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Yuan, X., Jiang, Q.: Reflection of plane waves from rotating pyroelectric half-space under initial stresses. Z. Angew. Math. Mech. 97, 365–374 (2017)

    Article  MathSciNet  Google Scholar 

  37. Burkov, S.I., Zolotova, O.P., Sorokin, B.P., Aleksandrov, K.S.: Anisotropy of dc electric field influence on acoustic wave propagation in piezoelectric plate (2010). arXiv preprint arXiv:1008.2058

  38. Othman, M.I.A., Song, Y.: Reflection of plane waves from an elastic solid half-space under hydrostatic initial stress without energy dissipation. Int. J. Solids Struct. 44, 5651–5664 (2007)

    Article  Google Scholar 

  39. Chatterjee, M., Dhua, S., Sahu, S.A., Chattopadhyay, A.: Reflection in a highly anisotropic medium for three-dimensional plane waves under initial stresses. Int. J. Eng. Sci. 85, 136–149 (2014)

    Article  Google Scholar 

  40. Guo, X., Wei, P.: Effects of initial stress on the reflection and transmission waves at the interface between two piezoelectric half spaces. Int. J. Solids Struct. 51, 3735–3751 (2014)

    Article  Google Scholar 

  41. Ledbetter, H., Ogi, H., Nakamura, N.: Elastic, anelastic, piezoelectric coefficients of monocrystal lithium niobate. Mech. Mater. 36, 941–947 (2004)

    Article  Google Scholar 

  42. Auld, B.A.: Acoustic Fields and Waves in Solids, vol. 1. Wiley, New York (1973)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (18KJB130004), the Natural Science Foundation of Jiangsu Province (SBK2019022365), NTU Startup Fund (03081078), the National Natural Science Foundation of China (61771265, 11771225, 61703215), the “333” Talents of Jiangsu (BRA2017475), the Qing LAN Project of Jiangsu, the Science and Technology Project of Nantong (CP12017001, GY12017006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Yuan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Shi, Q. & Cao, Y. Constant electric bias dependence of wave propagation in a rotating piezoelectric crystal. Acta Mech 231, 1209–1215 (2020). https://doi.org/10.1007/s00707-019-02596-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02596-4

Navigation