Skip to main content

Advertisement

Log in

The mechanism to reform dynamic performance of an elastic wave-front in a piezoelectric semiconductor by the wave-carrier interaction induced from static biasing fields

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The propagation of an elastic wave (EW) in a piezoelectric semiconductor (PSC) subjected to static biasing fields is investigated. It is found that there exist two coupling waves between electric field and charge carriers. One is stimulated by the action of the polarized electric field in the EW-front on charge carriers (EFC), and the other is stimulated by the action of initial electric field in biasing fields on dynamic carriers (IEC). Obviously, the latter is a man-made and tunable wave-carrier interaction. A careful study shows that IEC can play a leading role in remaking dynamic performance of the wave-front and an inter-medium role in transferring energy from biasing fields to EW-fronts. Hence, a method is proposed to reform the EW performance by biasing-fields: reforming the dispersivity of EW-fronts by promoting competition between IEC and EFC and inverting the dissipation by the IEC to transfer energy from biasing fields to EW-fronts. The corresponding tuning laws on the phase-frequency characteristics of an EW show that the wave velocity can be regulated smaller than the pure EW velocity at a low-frequency and larger than the pure piezoelectric wave velocity at a high-frequency. As for regulating the amplitude-frequency characteristics of the EW by the IEC, analyses show that EWs can obtain amplification only for those with relatively high vibration frequencies (small wave lengths). The studies will provide guidance for theoretical analysis of waves propagating in PSCs and practical application and design of piezotronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RAMANATHAN, A. K., GINGERICH, M. B., HEADINGS, L. M., and DAPINO, M. J. Metal structures embedded with piezoelectric PVDF sensors using ultrasonic additive manufacturing. Manufacturing Letters, 31, 96–100 (2021)

    Article  Google Scholar 

  2. JUNG, Y. H., PHAM, T. X., ISSA, D., WANG, H. S., LEE, J. H., CHUNG, M., LEE, B. Y., KIM, G., YOO, C. D., and LEE, K. J. Deep learning-based noise robust flexible piezoelectric acoustic sensors for speech processing. Nano Energy, 101, 107610 (2022)

    Article  Google Scholar 

  3. KOŠIR, T. and SLAVIČ, J. Single-process fused filament fabrication 3D-printed high-sensitivity dynamic piezoelectric sensor. Additive Manufacturing, 49, 102482 (2022)

    Article  Google Scholar 

  4. WANG, P., XIAO, Y., and WU, N. Electrical power generation using dynamic piezoelectric shear deformation under friction. Acta Mechanica Solida Sinica, 34, 977–988 (2021)

    Article  Google Scholar 

  5. CORBACHO, V. V., ES, J. V., KUIPER, H., and GILL, E. Direct self-heating power observations in pre-stressed piezoelectric actuators. Sensors and Actuators A: Physical, 333, 113276 (2022)

    Article  Google Scholar 

  6. VILARINHO, P. M., RIBEIRO, T., LARANJEIRA, R., PINHO, J., KINGON, A. I., and COSTA, M. E. Performance of piezoelectric actuators in gas microvalves: an engineering case study. Sensors and Actuators A: Physical, 344, 113703 (2022)

    Article  Google Scholar 

  7. YANG, L., DU, J. K., WANG, J., and YANG, J. S. An analysis of piezomagnetic-piezoelectric semiconductor unimorphs in coupled bending and extension under a transverse magnetic field. Acta Mechanica Solida Sinica, 34, 743–753 (2021)

    Article  Google Scholar 

  8. SHARMA, S., KIRAN, R., AZAD, P., and VAISH, R. A review of piezoelectric energy harvesting tiles: available designs and future perspective. Energy Conversion and Management, 254, 115272 (2022)

    Article  Google Scholar 

  9. ANTON, S. R. and SAFAEI, M. Piezoelectric energy harvesting. Encyclopedia of Smart Materials, 4, 104–116 (2022)

    Article  Google Scholar 

  10. WANG, Z. L. The new field of nanopiezotronics. Material Today, 10, 20–28 (2007)

    Article  Google Scholar 

  11. WANG, L. F. and WANG, Z. L. Advances in piezotronic transistors and piezotronics. Nano Today, 37, 101108 (2021)

    Article  Google Scholar 

  12. YANG, P. K., CHOU, S. A., HSU, C. H., MATHEW, R. J., CHIANG, K. H., YANG, J. Y., and CHEN, Y. T. Tin disulfide piezoelectric nanogenerators for biomechanical energy harvesting and intelligent human-robot interface applications. Nano Energy, 75, 104879 (2020)

    Article  Google Scholar 

  13. PENG, Y. Y., QUE, M. L., LEE, H. E., BAO, R. R., WANG, X. D., LU, J. F., YUAN, Z. Q., LI, X. Y., TAO, J., SUN, J. L., ZHAI, J. Y., LEE, K. J., and PAN, C. F. Achieving high-resolution pressure mapping via flexible GaN/ZnO nanowire LEDs array by piezo-phototronic effect. Nano Energy, 58, 633–640 (2019)

    Article  Google Scholar 

  14. ZHU, G., YANG, R. S., WANG, S. H., and WANG, Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Letters, 10, 3151–3155 (2010)

    Article  Google Scholar 

  15. CHOI, M. Y., CHOI, D., JIN, M. J., KIM, I., KIM, S. H., CHOI, J. Y., LEE, S. Y., KIM, J. M., and KIM, S. W. Mechanically powered transparent flexible charge-generating nanodevices with piezoelectric ZnO nanorods. Advanced Materials, 21, 2185–2189 (2009)

    Article  Google Scholar 

  16. WHITE, D. L. Amplification of ultrasonic waves in piezoelectric semiconductors. Journal of Applied Physics, 33, 2547–2554 (1962)

    Article  MATH  Google Scholar 

  17. SWIERKOWSKI, S., DUZER, T. V., and TURNER, C. W. Amplification of acoustic surface waves in piezoelectric semiconductors. IEEE Transactions on Sonics and Ultrasonics, 20, 260–266 (1973)

    Article  Google Scholar 

  18. SCHÜLEIN, F. J. R., MÜLLER, K., BICHLER, M., KOBLMÜLLER, G., FINLEY, J. J., WIXFORTH, A., and KRENNER, H. J. Acoustically regulated carrier injection into a single optically active quantum dot. Physical Review B, 88, 085307 (2013)

    Article  Google Scholar 

  19. BÜYÜKKÖSE, S., HERNÁNDEZ-MINGUEZ, A., VRATZOV, B., SOMASCHINI, C., GEELHAAR, L., RIECHERT, H., WIEL, W. G., and SANTOS, P. V. High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology, 25, 135204 (2014)

    Article  Google Scholar 

  20. HUTSON, A. R. and WHITE, D. L. Elastic wave propagation in piezoelectric semiconductors. Journal of Applied Physics, 33, 40–47 (1962)

    Article  Google Scholar 

  21. LIANG, Y. X. and HU, Y. T. Effect of interaction among the three time scales on the propagation characteristics of coupled waves in a piezoelectric semiconductor rod. Nano Energy, 68, 104345 (2020)

    Article  Google Scholar 

  22. JIAO, F. Y., WEI, P. J., ZHOU, X. L., and ZHOU, Y. H. The dispersion and attenuation of the multi-physical fields coupled waves in a piezoelectric semiconductor. Ultrasonics, 92, 68–78 (2019)

    Article  Google Scholar 

  23. ZHANG, C. L., WANG, X. Y., CHEN, W. Q., and YANG, J. S. Propagation of extensional waves in a piezoelectric semiconductor rod. AIP Advances, 6, 045301 (2016)

    Article  Google Scholar 

  24. ZHU, F., ZHU, S. H., ZHU, J. Q., QIAN, Z. H., and YANG, J. S. Study on the influence of semiconductive property for the improvement of nanogenerator by wave mode approach. Nano Energy, 52, 474–484 (2018)

    Article  Google Scholar 

  25. WHITE, R. M. Surface elastic-wave propagation and amplification. IEEE Transactions on Electron Devices, 14, 181–189 (2005)

    Article  Google Scholar 

  26. YANG, J. S. and ZHOU, H. G. Amplification of acoustic waves in piezoelectric semiconductor plates. International Journal of Solids and Structures, 42, 3171–3183 (2005)

    Article  MATH  Google Scholar 

  27. CAO, X. S., HU, S. M., LIU, J. J., and SHI, J. P. Generalized Rayleigh surface waves in a piezoelectric semiconductor half space. Meccanica, 54, 271–281 (2019)

    Article  MathSciNet  Google Scholar 

  28. YANG, J. S., YANG, X. M., and TURNER, J. A. Amplification of acoustic waves in laminated piezo-electric semiconductor plates. Archive of Applied Mechanics, 74, 288–298 (2004)

    Article  MATH  Google Scholar 

  29. TIAN, R., NIE, G. Q., LIU, J. X., PAN, E., and WANG, Y. S. On Rayleigh waves in a piezoelectric semiconductor thin film over an elastic half-space. International Journal of Mechanical Sciences, 204, 106565 (2021)

    Article  Google Scholar 

  30. JIAO, F. Y., WEI, P. J., ZHOU, Y. H., and ZHOU, X. L. Wave propagation through a piezoelectric semiconductor slab sandwiched by two piezoelectric half-spaces. European Journal of Mechanics-A/Solids, 75, 70–81 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. HU, Y. T., YANG, J. S., and JIANG, Q. A model for electroelastic plates under biasing fields with applications in buckling analysis. International Journal of Solids and Structures, 39, 2629–2642 (2002)

    Article  MATH  Google Scholar 

  32. YANG, W. L., HU, Y. T., and PAN, E. Tuning electronic energy band in a piezoelectric semiconductor rod via mechanical loading. Nano Energy, 66, 104147 (2019)

    Article  Google Scholar 

  33. AULD, B. A. Acoustic Fields and Waves in Solids, Chapman and Hall, London (1973)

    Google Scholar 

  34. WANG, Z. L., YANG, R., ZHOU, J., QIN, Y., XU, C., HU, Y., and XU, S. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Materials Science and Engineering: R: Reports, 70, 320–329 (2010)

    Article  Google Scholar 

  35. ACHENBACH, J. D. Wave Propagation in Elastic Solids, North-Holland, Amsterdam (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuantai Hu.

Additional information

Citation: YANG, W. L., LIU, J. X., YANG, Y. Z., and HU, Y. T. The mechanism to reform dynamic performance of an elastic wave-front in a piezoelectric semiconductor by the wave-carrier interaction induced from static biasing fields. Applied Mathematics and Mechanics (English Edition), 44(3), 381–396 (2023) https://doi.org/10.1007/s10483-023-2968-7

Project supported by the National Natural Science Foundation of China (Nos. 12232007, 12102141, U21A20430, and 11972164) and the Chinese Postdoctoral Science Foundation (No. 2022M711252)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Liu, J., Yang, Y. et al. The mechanism to reform dynamic performance of an elastic wave-front in a piezoelectric semiconductor by the wave-carrier interaction induced from static biasing fields. Appl. Math. Mech.-Engl. Ed. 44, 381–396 (2023). https://doi.org/10.1007/s10483-023-2968-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-023-2968-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation