Skip to main content
Log in

Effects of rotation and initial stresses on pyroelectric waves

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to address the pyroelectric waves in the presence of the rotation and initial stress effects. A set of homogeneous equations in displacements, electric potential and temperature are derived within the rotatory coordinate system, accounting for the Coriolis and centrifugal accelerations as well as the initial stresses. The performed plane example presents the rotation, initial stresses, relaxation time and attenuation angle on the pyroelectric waves in the framework of inhomogeneous wave theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Huston, R.L.: Wave propagation in rotating elastic media. AIAA J. 2(3), 575–576 (1964)

    Article  MathSciNet  Google Scholar 

  2. Huston, R.L.: In-plane vibration of spinning disks. AIAA J. 3(8), 1519–1520 (1965)

    Article  Google Scholar 

  3. Schoenbe, M., Censor, D.: Elastic-waves in rotating media. Q. Appl. Math. 31(1), 115–125 (1973)

    MATH  Google Scholar 

  4. Pao, Y.H., Gamer, U.: Acoustoelastic waves in orthotropic media. J. Acoust. Soc. Am. 77(3), 806–812 (1985)

    Article  MATH  Google Scholar 

  5. Bera, R.K.: Propagation of waves in random rotating infinite magneto-thermo-visco-elastic medium. Comput. Math. Appl. 36(9), 85–102 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wauer, J.: Waves in rotating conducting piezoelectric media. J. Acoust. Soc. Am. 106(2), 626–636 (1999)

    Article  Google Scholar 

  7. Destrade, M., Saccomandi, G.: Some results on finite amplitude elastic waves propagating in rotating media. Acta. Mech. 173(1–4), 19–31 (2004)

    Article  MATH  Google Scholar 

  8. Auriault, J.L.: Body wave propagation in rotating elastic media. Mech. Res. Comm. 31(1), 21–27 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Auriault, J.-L.: Acoustics of rotating deformable saturated porous media. Transp. Porous Med. 61(2), 235–237 (2005)

    Article  MathSciNet  Google Scholar 

  10. Yang, J.S.: A review of analyses related to vibrations of rotating piezoelectric bodies and gyroscopes. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 52(5), 698–706 (2005)

    Article  Google Scholar 

  11. Singh, J., Tomar, S.K.: Plane waves in a rotating micropolar porous elastic solid. J. Appl. Phys. 102(7), 074906–074907 (2007)

    Article  Google Scholar 

  12. Sharma, J.N., Grover, D.: Body wave propagation in rotating thermoelastic media. Mech. Res. Comm. 36(6), 715–721 (2009)

    Article  MATH  Google Scholar 

  13. Kumar, R.: Rupender: effect of rotation in magneto-micropolar thermoelastic medium due to mechanical and thermal sources. Chaos Solitons Fract. 41(4), 1619–1633 (2009)

    Article  MATH  Google Scholar 

  14. Biryukov, S.V., Schmidt, H., Weihnacht, M.: Gyroscopic effect for SAW in common piezoelectric crystals. In: 2009 IEEE International Ultrasonics Symposium (IUS), pp. 2133–2136 (2009)

  15. Sharma, J.N., Grover, D., Kaur, D.: Mathematical modelling and analysis of bulk waves in rotating generalized thermoelastic media with voids. Appl. Math. Model. 35(7), 3396–3407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wegert, H., Reindl, L.M., Ruile, W., Mayer, A.P.: On the Coriolis effect in acoustic waveguides. J. Acoust. Soc. Am. 131(5), 3794–3801 (2012)

    Article  Google Scholar 

  17. Prasad, R., Mukhopadhyay, S.: Effects of rotation on harmonic plane waves under two-temperature thermoelasticity. J. Therm. Stress. 35(11), 1037–1055 (2012)

    Article  Google Scholar 

  18. Kothari, S., Mukhopadhyay, S.: Study of harmonic plane waves in rotating thermoelastic media of type III. Math. Mech. Solid. 17(8), 824–839 (2012)

    Article  MathSciNet  Google Scholar 

  19. Abd-Alla, A.M., Yahya, G.A.: Thermal stresses in infinite circular cylinder subjected to rotation. Appl. Math. Mech. Engl. Ed. 33(8), 1059–1078 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gandhi, N., Michaels, J.E., Lee, S.J.: Acoustoelastic Lamb wave propagation in biaxially stressed plates. J. Acoust. Soc. Am. 132(3), 1284–1293 (2012)

    Article  Google Scholar 

  21. Yuan, X., Chen, S.: The inhomogeneous waves in a rotating piezoelectric body. Sci. World J. 2013(8) (2013)

  22. Simionescu-Panait, O.: Energy estimates for Love wave in a pre-stressed layered structure. Ann. Univ. Buchar. Math. Ser. 4(LXII), 229–241 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Kuang, Z.-B.: Theory of Electroelasticity. Shanghai Jiao Tong University Press/Springer, Shanghai/Berlin (2014)

    Book  MATH  Google Scholar 

  24. Censor, D., Schoenberg, M.: Two dimensional wave problems in rotating elastic media. Appl. Sci. Res. 27(1), 401–414 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lao, B. Y.: Gyroscopic effect in surface acoustic waves. In: Ultrasonics Symposium, pp. 687–691 (1980)

  26. Zhou, Y.H., Jiang, Q.: Effects of Coriolis force and centrifugal force on acoustic waves propagating along the surface of a piezoelectric half-space. Z. Angew. Math. Phys. 52(6), 950–965 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Destrade, M.: Surface acoustic waves in rotating orthorhombic crystals. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 460(2042), 653–665 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ting, T.C.T.: Surface waves in a rotating anisotropic elastic half-space. Wave Motion 40(4), 329–346 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rahmoune, M., Essoufi, E., Sanbi, M.: Rotation and thermal effects on the rayleigh wave propagating upon a thermopiezoelectric half-space. In: The 17th International Congress on Sound & Vibration (2009)

  30. Sharma, J.N., Walia, V.: Effect of rotation on Rayleigh waves in piezothermoelastic half space. Int. J. Solids Struct. 44(3–4), 1060–1072 (2007)

    Article  MATH  Google Scholar 

  31. Kumar, R., Kansal, T.: Effect of rotation on Rayleigh waves in an isotrophic generalized thermoelastic diffusive half-space. Arch. Mech. 60(5), 421–443 (2008)

    MathSciNet  MATH  Google Scholar 

  32. Walia, V., Sharma, J.N., Sharma, P.K.: Propagation characteristics of thermoelastic waves in piezoelectric (6 mm class) rotating plate. Eur. J. Mech. A/Solids 28(3), 569–581 (2009)

    Article  MATH  Google Scholar 

  33. Yuan, X.: Waves in a rotating pyroelectric body. J. Therm. Stress. 38(4), 399–414 (2015)

  34. Yuan, X., Kuang, Z.: The inhomogeneous waves in pyroelectrics. J. Therm. Stress. 33(3), 172–186 (2010)

    Article  Google Scholar 

  35. Yuan, X.: The energy process of pyroelectric medium. J. Therm. Stress. 33(5), 413–426 (2010)

    Article  Google Scholar 

  36. Kuang, Z.B., Yuan, X.: Reflection and transmission of waves in pyroelectric and piezoelectric materials. J. Sound Vib. 330(6), 1111–1120 (2011)

    Article  Google Scholar 

  37. Yuan, X., Zhu, Z.H.: Reflection and refraction of plane waves at interface between two piezoelectric media. Acta. Mech. 223(12), 2509–2521 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Goldstein, H., Poole, C.P., Safko, J.L.: Classical Mechanics. Addison-Wesley, San Francisco (2002)

    MATH  Google Scholar 

  39. Hutter, K., Ven, AaF, Ursescu, A.: Electromagnetic Field Matter Interactions in Thermoelastic Solids and Viscous Fluids. Springer, Berlin (2006)

    Google Scholar 

  40. Dieulesaint, E., Royer, D.: Elastic Waves in Solids: Applications to Signal Processing. Wiley, New York (1980)

    MATH  Google Scholar 

  41. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua: Foundations and Solid Media. Fluids and Complex Media. Springer, Berlin (1990)

    Book  Google Scholar 

  42. Nelson, D.F.: Electric, Optic, and Acoustic Interactions in Dielectrics. Wiley, New York (1979)

    Google Scholar 

  43. Nowacki, W.: Dynamic Problems of Thermoelasticity. Noordhoof International, Leyden (1975)

    MATH  Google Scholar 

  44. Ristic, V.M.: Principles of Acoustic Devices. Wiley, New York (1983)

    Google Scholar 

  45. Tiersten, H.F.: Linear Piezoelectric Plate Vibrations. Plenum Press, New York (1969)

    Book  Google Scholar 

  46. Auld, B.A.: Acoustic Fields and Waves in Solids. Wiley, New York (1973)

    Google Scholar 

  47. Declercq, N.F., Degrieck, J., Leroy, O.: Inhomogeneous waves in piezoelectric crystals. Acta Acust. United Acust. 91(5), 840–845 (2005)

    MATH  Google Scholar 

  48. Maugin, G.A.: Continuum Mechanics of Electromagnetic Solids. North-Holland, Amsterdam (1988)

    MATH  Google Scholar 

  49. Vernotte, P.: Les paradoxes de la theorie continue de l’equation de la chaleur. Comptes Rend Acad Sci. 246, 3154 (1958)

    MathSciNet  Google Scholar 

  50. Cattaneo, C.: Sur une forme de l’equation eliminant le paradoxe d’une propagation instantanee. Comptes Rend Acad Sci. 247, 431–432 (1958)

    MathSciNet  Google Scholar 

  51. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15(5), 299–309 (1967)

    Article  MATH  Google Scholar 

  52. Abd-Alla, A.-E.-N., Giorgio, I., Galantucci, L., Hamdan, A., Vescovo, D.: Wave reflection at a free interface in an anisotropic pyroelectric medium with nonclassical thermoelasticity. Contin. Mech. Thermodyn. 1–18 (2014)

  53. Abd-Alla, A.-E.-N., Hamdan, A., Giorgio, I., Del Vescovo, D.: The mathematical model of reflection and refraction of longitudinal waves in thermo-piezoelectric materials. Arch. Appl. Mech. 84(9–11), 1229–1248 (2014)

    Article  Google Scholar 

  54. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41–73 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  55. Joseph, D.D., Preziosi, L.: Addendum to the paper “heat waves” [Rev. Mod. Phys. 61, 41 (1989)]. Rev. Mod. Phys. 62(2), 375–391 (1990)

  56. Caviglia, G., Morro, A., Straughan, B.: Thermoelasticity at cryogenic temperatures. Int. J. Non-Linear Mech. 27(2), 251–263 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X. Effects of rotation and initial stresses on pyroelectric waves. Arch Appl Mech 86, 433–444 (2016). https://doi.org/10.1007/s00419-015-1038-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-015-1038-z

Keywords

Navigation