Skip to main content
Log in

Vasomodulatory effects of the angiotensin II type 1 receptor antagonist losartan on experimentally induced cerebral vasospasm after subarachnoid haemorrhage

  • Original Article - Vascular
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

A Correction to this article was published on 22 December 2017

This article has been updated

Abstract

Background

Cerebral vasospasm following subarachnoid haemorrhage (SAH) remains one of the major factors contributing to poor overall patient outcome. Prostaglandin F2-alpha (PGF2a) induces vasoconstriction. After SAH, PGF2a leads to cerebral inflammation and enhanced vasoconstriction, resulting in cerebral vasospasm. Losartan is already known to have beneficial effects in stroke models and also on several cerebral inflammatory processes. Therefore, the aim of the study was to analyse the effect of losartan on PGF2a-enhanced vasoconstriction after SAH.

Methods

To investigate the effect of losartan on PGF2a-enhanced vasoconstriction after SAH, cerebral vasospasm was induced by a double-haemorrhage model. Rats were killed on day 3 and 5 after SAH followed by measurement of the isometric force of basilar artery ring segments in an organ bath.

Results

PGF2a induced a dose-dependent contraction. After pre-incubation with losartan, the maximum contraction (Emax) for sham-operated animals was significantly lowered [Emax 6% in losartan 3 × 10−4 molar (M) vs. 56% without losartan]. Also, after induced SAH, PGF2a induced no vasoconstriction in pre-incubated vessels with losartan 3 × 10−4 M on day 3 (d3) as well as on day 5 (d5). For the vasorelaxative investigations, vessel segments were pre-incubated with PFG2a. Cumulative application of losartan completely resolved the pre-contraction in sham-operated animals (non SAH: 95% relaxation). After SAH, losartan not only resolved the pre-contraction (d5: 103%), but also exceeded the pre-contraction (d3: 119%). Therefore, a statistically significantly increased and earlier relaxation was calculated for all losartan concentrations [Emax (d3/d5) and pD2 (d3/d5)] compared with the solvent control group.

Conclusion

In a physiological and pathophysiological setup, losartan reduces a PGF2-induced vasoconstriction and reverses a PGF2a-precontraction completely. This fact can be integrated in pushing forward further concepts trying to antagonise/prevent cerebral vasospasm after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 22 December 2017

    The original version of this paper unfortunately captured the names of Florian Gessler and Volker Seifert incorrectly and are now corrected in this paper.

References

  1. Konczalla J, Wanderer S, Mrosek J, Schuss P, Platz J, Güresir E, Seifert V, Vatter H (2013) Crosstalk between the Angiotensin and endothelin-system in the cerebrovasculature. Curr Neurovasc Res 10:335–345

  2. Wanderer S, Mrosek J, Vatter H, Seifert V, Konczalla J (2017) Crosstalk between the angiotensin and endothelin system in the cerebrovasculature after experimental induced subarachnoid hemorrhage. Neurosurg Rev. https://doi.org/10.1007/s10143-017-0887-z

  3. Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH (2013) Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res 4(4):432–446

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dreier JP, Drenckhahn C, Woitzik J, Major S, Offenhauser N, Weber-Carstens S, Wolf S, Strong AJ, Vajkoczy P, Hartings JA, COSBID Study Group (2013) Spreading ischemia after aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl 115:125–129

    PubMed  Google Scholar 

  5. Budohoski KP, Czosnyka M, Smielewski P, Kasprowicz M, Helmy A, Bulters D, Pickard JD, Kirkpatrick PJ (2012) Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke 43:3230–3237

    Article  PubMed  Google Scholar 

  6. Vatter H, Konczalla J, Seifert V (2011) Endothelin related pathophysiology in cerebral vasospasm: what happens to the cerebral vessels? Acta Neurochir Suppl 110:177–180

    PubMed  Google Scholar 

  7. Vatter H, Konczalla J, Weidauer S, Preibisch C, Zimmermann M, Raabe A, Seifert V (2007) Effect of delayed cerebral vasospasm on cerebrovascular endothelin a receptor expression and function. J Neurosurg 107:121–127

    Article  PubMed  Google Scholar 

  8. Kassell NF, Torner JC, Haley EC Jr, Jane JA, Adams HP, Kongable GL (1990) The international cooperative study on the timing of aneurysm surgery. Part 1: overall management results. J Neurosurg 73:18–36

    Article  CAS  PubMed  Google Scholar 

  9. Kitazono T, Heistad DD, Faraci FM (1995) Dilatation of the basilar artery in response to selective activation of endothelin B receptors in vivo. J Pharmacol Exp Ther 273:1–6

    CAS  PubMed  Google Scholar 

  10. Knecht KR, Leffler CW (2010) Distinct effects of intravascular and extravascular angiotensin II on cerebrovascular circulation of newborn pigs. Exp Biol Med (Maywood) 235(12):1479–1488

    Article  CAS  Google Scholar 

  11. Kohno M, Horio T, Ikeda M, Yokokawa K, Fukui T, Yasunari K et al (1992) Angiotensin II stimulates endothelin-1 secretion in cultured rat mesangial cells. Kidney Int 42(4):860–866

    Article  CAS  PubMed  Google Scholar 

  12. Konczalla J, Mrosek J, Wanderer S, Schuss P, Güresir E, Seifert V, Vatter H, Platz J (2013) Functional effects of levosimendan in rat basilar arteries in vitro. Curr Neurovasc Res 10:126–133

    Article  CAS  PubMed  Google Scholar 

  13. Konczalla J, Vatter H, Weidauer S, Raabe A, Seifert V (2006) Alteration of the cerebrovascular function of endothelin B receptor after subarachnoidal hemorrhage in the rat. Exp Biol Med (Maywood) 231:1064–1068

    CAS  Google Scholar 

  14. Konczalla J, Wanderer S, Mrosek J, Gueresir E, Schuss P, Platz J, Seifert V, Vatter H (2016) Levosimendan, a new therapeutic approach to prevent delayed cerebral vasospasm after subarachnoid hemorrhage? Acta Neurochir 158:2075–2083

    Article  PubMed  Google Scholar 

  15. Vatter H, Mursch K, Zimmermann M, Zilliken M, Zilliken P, Kolenda H, Seifert V, Schilling L (2002) Endothelin-converting enzyme activity in human cerebral circulation. Neurosurgery 51:445–451

    Article  PubMed  Google Scholar 

  16. Vatter H, Weidauer S, Konczalla J, Dettmann E, Zimmermann M, Raabe A, Preibisch C, Zanella FE, Seifert V (2006) Time course in the development of cerebral vasospasm after experimental subarachnoid hemorrhage: clinical and neuroradiological assessment of the rat double hemorrhage model. Neurosurgery 58:1190–1197

    Article  PubMed  Google Scholar 

  17. Hansen-Schwartz J (2004) Receptor changes in cerebral arteries after subarachnoid haemorrhage. Acta Neurol Scand 109:33–34

    Article  PubMed  Google Scholar 

  18. Asaeda M, Sakamoto M, Kurosaki M, Tabuchi S, Kamitani H, Yokota M, Watanabe T (2005) A non-enzymatic derived arachidonyl peroxide, 8-iso-prostaglandin F2 alpha, in cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage participates in the pathogenesis of delayed cerebral vasospasm. Neurosci Lett 373:222–225

    Article  CAS  PubMed  Google Scholar 

  19. Brandt L, Ljunggren B, Andersson KE, Hindfelt B, Uski T (1983) Prostaglandin metabolism and prostacyclin in cerebral vasospasm. Gen Pharmacol 14:141–143

    Article  CAS  PubMed  Google Scholar 

  20. Chen S, Ma Q, Krafft PR, Hu Q, Rolland W 2nd, Sherchan P, Zhang J, Tang J, Zhang JH (2013) P2X7r/cryopyrin inflammasome axis inhibition reduces neuroinflammation after SAH. Neurobiol Dis 58C:298–307

    Google Scholar 

  21. Egg D, Herold M, Rumpl E, Günther R (1980) Prostaglandin F2 alpha levels in human cerebrospinal fluid in normal and pathological conditions. J Neurol 222:239–248

    Article  CAS  PubMed  Google Scholar 

  22. Rasmussen R, Wetterslev J, Stavngaard T, Juhler M, Skjøth-Rasmussen J, Grände PO, Olsen NV (2014) Effects of prostacyclin on cerebral blood flow and vasospasm after subarachnoid hemorrhage: randomized, pilot trial. Stroke 46:37–41

    Article  PubMed  Google Scholar 

  23. Seifert V, Stolke D, Kaever V, Dietz H (1987) Arachidonic acid metabolism following aneurysm rupture. Evaluation of cerebrospinal fluid and serum concentration of 6-keto-prostaglandin F1 alpha and thromboxane B2 in patients with subarachnoid hemorrhage. Surg Neurol 27:243–252

    Article  CAS  PubMed  Google Scholar 

  24. Yokata M, Tani E, Fukumori T, Maeda Ym Yamaura I (1991) Effects of subarachnoid hemorrhage and a thromboxane synthetase inhibitor on intracranial prostaglandins. Surg Neurol 35:345–349

    Article  Google Scholar 

  25. Biancardi VC, Stranahan AM, Krause EG, de Kloet AD, Stern JE (2016) Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Am J Physiol Heart Circ Physiol 310(3):H404–H414

    Article  PubMed  Google Scholar 

  26. Saygili E, Rana OR, Saygili E, Reuter H, Frank K, Schwinger RH et al (2007) Losartan prevents stretch-induced electrical remodeling in cultured atrial neonatal myocytes. Am J Physiol Heart Circ Physiol 292(6):H2898–H2905

    Article  CAS  PubMed  Google Scholar 

  27. Maeso R, Rodrigo E, Munoz-Garcia R, Navarro-Cid J, Ruilope LM, Lahera V et al (1997) Losartan reduces constrictor responses to endothelin-1 and the thromboxane A2 analogue in aortic rings from spontaneously hypertensive rats: role of nitric oxide. J Hypertens 15(12 Pt 2):1677–1684

    Article  CAS  PubMed  Google Scholar 

  28. Schmerbach K, Schefe JH, Krikov M, Muller S, Villringer A, Kintscher U et al (2008) Comparison between single and combined treatment with candesartan and pioglitazone following transient focal ischemia in rat brain. Brain Res 1208:225–233

    Article  CAS  PubMed  Google Scholar 

  29. Hong KS, Kang DW, Bae HJ, Kim YK, Han MK, Park JM et al (2010) Effect of cilnidipine vs losartan on cerebral blood flow in hypertensive patients with a history of ischemic stroke: a randomized controlled trial. Acta Neurol Scand 121(1):51–57

    Article  CAS  PubMed  Google Scholar 

  30. Smeda JS, Daneshtalab N (2011) The effects of poststroke captopril and losartan treatment on cerebral blood flow autoregulation in SHRsp with hemorrhagic stroke. J Cereb Blood Flow Metab 31(2):476–485

    Article  CAS  PubMed  Google Scholar 

  31. Engelhorn T, Goerike S, Doerfler A, Okorn C, Forsting M, Heusch G et al (2004) The angiotensin II type 1-receptor blocker candesartan increases cerebral blood flow, reduces infarct size, and improves neurologic outcome after transient cerebral ischemia in rats. J Cereb Blood Flow Metab 24(4):467–474

    Article  PubMed  Google Scholar 

  32. Guan W, Kozak A, El-Remessy AB, Johnson MH, Pillai BA, Fagan SC (2011) Acute treatment with Candesartan reduces early injury after permanent middle cerebral artery occlusion. Transl Stroke Res 2(2):179–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lapchak PA (2013) Recommendations and practices to optimize stroke therapy: developing effective translational research programs. Stroke 44(3):841–843

    Article  PubMed  Google Scholar 

  34. Güresir E, Vasiliadis N, Konczalla J, Raab P, Hattingen E, Seifert V, Vatter H (2013) Erythropoetin prevents delayed hemodynamic dysfunction after subarachnoid hemorrhage in a randomized controlled experimental setting. J Neurol Sci 332:128–135

    Article  PubMed  Google Scholar 

  35. Schilling L, Feger GI, Ehrenreich H, Wahl M (1995) Endothelin-3-induced relaxation of isolated rat basilar artery is mediated by an endothelial ETB-type endothelin receptor. J Cereb Blood Flow Metab 15:699–705

    Article  CAS  PubMed  Google Scholar 

  36. Seifert V, Loffler BM, Zimmermann M, Roux S, Stolke D (1995) Endothelin concentrations in patients with aneurysmal subarachnoid hemorrhage. Correlation with cerebral vasospasm, delayed ischemic neurological deficits, and volume of hematoma. J Neurosurg 82:55–62

    Article  CAS  PubMed  Google Scholar 

  37. Barnard JW, Ward RA, Taylor AE (1992) Evaluation of prostaglandin F2 alpha and prostacyclin interactions in the isolated perfused rat lung. J Appl Physiol 72:2469–2474

    Article  CAS  PubMed  Google Scholar 

  38. Ogawa H, Kassell NF, Sasaki T, Nakagomi T, Hongo K, Tsukahara T (1989) Rapid increase of prostaglandin F2-alpha in neurons after subarachnoid hemorrhage in rats: an immunohistochemical study. Acta Neuropathol 78:621–628

    Article  CAS  PubMed  Google Scholar 

  39. Provencio JJ (2013) Inflammation in subarachnoid hemorrhage and delayed deterioration associated with vasospasm: a rewiev. Acta Neurochir Suppl 115:233–238

    PubMed  PubMed Central  Google Scholar 

  40. Salom JB, Torregrosa G, Alborch E (1995) Endothelins and the cerebral circulation. Cerebrovasc Brain Metab Rev 7:131–152

    CAS  PubMed  Google Scholar 

  41. Chehrazi BB, Giri S, Joy RM (1989) Prostaglandins and vasoactive amines in cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Stroke 20:217–224

    Article  CAS  PubMed  Google Scholar 

  42. D’Avella D, Germano A, Santoro G, Costa G, Zuccarello M, Caputi AP, Hayes RL, Tomasello F (1990) Effect of experimental subarachnoid hemorrhage on CSF eicosanoids in the rat. J Neurotrauma 7:121–129

    Article  PubMed  Google Scholar 

  43. Jadhav VD, Jabre A, Lee TJ (2008) Effect of phospholipase C blockade on cerebral vasospasm. Cerebrovasc Dis 25:362–365

    Article  CAS  PubMed  Google Scholar 

  44. Kassell NF, Peerless SJ, Durward QJ, Beck DW, Drake CG, Adams HP (1982) Treatment of ischemic deficits from vasospasm with intravascular volume expansion and induced arterial hypertension. Neurosurgery 11(3):337–343

    Article  CAS  PubMed  Google Scholar 

  45. Koskinen LO, Olivecrona M, Rodling-Wahlstrom M, Naredi S (2009) Prostacyclin treatment normalises the MCA flow velocity in nimodipine-resistant cerebral vasospasm after aneurysmal subarachnoid haemorrhage: a pilot study. Acta Neurochir 151:595–599

    Article  PubMed  Google Scholar 

  46. Mark KS, Trickler WJ, Miller DW (2001) Tumor necrosis factor-alpha induces cyclooxygenase-2 expression and prostsaglandin release in brain microvessel endothelial cells. J Pharmacol Exp Ther 297:1051–1058

    CAS  PubMed  Google Scholar 

  47. Nilsson T, Cantera L, Adner M, Edvinsson L (1997) Presence of contractile endothelin-A and dilatory endothelin-B receptors in human cerebral arteries. Neurosurgery 40:346–351

    Article  CAS  PubMed  Google Scholar 

  48. Sakamoto M, Takaki E, Yamashita K, Watanabe K, Tabuchi S, Watanabe T, Satoh K (2002) Nonenzymatic derived lipid peroxide, 8-iso-PGF2 alpha, participates in the pathogenesis of delayed cerebral vasospasm in a canine SAH model. Neurol Res 24:301–306

    Article  CAS  PubMed  Google Scholar 

  49. Gomez-Garre D, Martin-Ventura JL, Granados R, Sancho T, Torres R, Ruano M, Garcia-Puig J, Egido J (2006) Losartan improves resistance artery lesions and prevents CTGF and TGF-beta production in mild hypertensive patients. Kidney Int 69(7):1237–1244

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Marina Heibel for her excellent technical support. Furthermore, we are grateful for the experimental assistance of Dr. med. Vet. A. Theisen.

This study was not funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Wanderer.

Ethics declarations

Conflict of interest

The authors confirm that this article content has no conflicts of interest. The authors have no personal, financial or institutional interest in any of the drugs, materials or devices described in this article.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Additional information

Comments

This is an experimental study looking at the physiology of PGF2a-dependent vasoconstriction and the potential amelioration of this effect by the blocking agent losartan. This is a bench-type basic investigation. The clinical correlate, of course, would be to show that somehow losartan or a similar compound could ameliorate cerebral vasospasm following SAH. To be clear, however, there are no clinical results or data in this preclinical study presented here.

Considering the method, the study is well designed to evaluate PGF2a physiology in both sham vessels and vessels subjected toe experimental SAH. It is clear that PGF2a induces a vasoconstriction response and equally clear that losartan can either prevent this response or produce vasorelaxation after experimental SAH.

What we take from this elegant series of experiments is that we need to learn more about PGF2a and losartan. Like so many interventions previously tried for post-SAH vasospasm, there is a long and arduous path between preclinical success and clinical relief for patients. This agent is no different. We look forward to further investigations to elucidate the mechanisms of losartan action and perhaps someday a clinical trial.

Christopher Miranda Loftus

PA, USA

The original version of this article was revised: Authornames are corrected in this paper.

A correction to this article is available online at https://doi.org/10.1007/s00701-017-3441-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanderer, S., Mrosek, J., Gessler, F. et al. Vasomodulatory effects of the angiotensin II type 1 receptor antagonist losartan on experimentally induced cerebral vasospasm after subarachnoid haemorrhage. Acta Neurochir 160, 277–284 (2018). https://doi.org/10.1007/s00701-017-3419-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-017-3419-2

Keywords

Navigation