Skip to main content
Log in

Palynological diversity and major evolutionary trends in Cyperaceae

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Pollen and orbicule morphology of 84 species, representing 52 genera from all tribes and subfamilies are investigated, in order to assess the systematic value of palynological data and to determine palynological evolutionary trends in Cyperaceae. A total of 90% of the species are examined for the first time with scanning electron microscopy. Pollen grains of Cyperaceae are oblate spheroidal to perprolate in shape, inaperturate to polyporate with opercula or pontopercula on pori or colpi. We distinguished seven different sexine ornamentation patterns. Orbicules occur in all species investigated. Pollen morphological variation within Cyperaceae is considerable and includes dispersal unit; number, location and degree of differentiation of apertural zones; and sexine ornamentation patterns. In subfamily Mapanioideae both tribes can be characterized by palynological synapomorphies. However, in subfamily Cyperoideae, the observed pattern of variation does not fit the most recent molecular phylogeny due to high levels of homoplasy and polymorphism in major pollen characters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Blackmore S, Crane PR (1998) The evolution of apertures in the spores and pollen grains of embryophytes. In: Owens SJ, Rudall P (eds) Reproductive biology in systematics, conservation and economic botany. Royal Botanic Gardens, Kew, pp 159–182

    Google Scholar 

  • Brown RC, Lemmon BE (2000) The cytoskeleton and polarization during pollen development in Carex blanda (Cyperaceae). Amer J Bot 87:1–11

    Article  Google Scholar 

  • Bruhl JJ (1995) Sedge genera of the world—relationships and a new classification of the Cyperaceae. Austral Syst Bot 8:125–305

    Article  Google Scholar 

  • Buchner R, Weber M (2000) PalDat—a palynological database: descriptions, illustrations, identification, and information retrieval. http://www.paldat.org/

  • Carniel K (1971) Über die lamelläre Struktur und die Herkunft des Pollenkittes bei Heleocharis palustris. Pl Syst Evol 119:464–474

    Article  Google Scholar 

  • Chanda S (1966) On the pollen morphology of the Centrolepidaceae, Restionaceae and Flagellariaceae, with special reference to taxonomy. Grana 6:355–415

    Google Scholar 

  • Chanda S, Nilsson S, Blackmore S (1988) Phylogenetic trends in the Alismatales with reference to pollen grains. Grana 27:257–272

    Google Scholar 

  • Cranwell LM (1953) Cyperales. New Zealand pollen studies: The monocotyledons. Bulletin of the Auckland Institute and Museum, vol 3. Auckland Institute and Museum, Auckland, pp 42–47

  • Dahlgren RMT, Clifford HT, Yeo PF (1985) The families of the monocotyledons. Academic Press, London

    Google Scholar 

  • Datta K, Chaturvedi M (2004) Pollen morphology of Basmati cultivars (Oryza sativa race Indica)—exine surface ultrastructure. Grana 43:89–93

    Article  Google Scholar 

  • Davis GL (1966) Systematic embryology of the angiosperms. Wiley, New York

    Google Scholar 

  • Dunbar A (1973) Pollen development in Eleocharis Palustris Group (Cyperaceae). 1. Ultrastructure and ontogeny. Bot Not 126:197–254

    Google Scholar 

  • El-Ghazaly G, Jensen WA (1987) Development of wheat (Triticum aestivum) pollen. II. Histochemical differentiation of wall and Ubisch bodies during development. Amer J Bot 74:1396–1418

    Article  Google Scholar 

  • Erdtman G (1952) Pollen morphology and plant taxonomy. Almqvist & Wiksell, Stockholm

    Google Scholar 

  • Erdtman G (1966) Pollen morphology and plant taxonomy. Angiosperms. Hafner, New York

    Google Scholar 

  • Erdtman G (1971) Pollen morphology and plant taxonomy. Angiosperms, 2nd edn. Hafner, New York

    Google Scholar 

  • Erdtman G, Berglund B, Praglowski J (1961) An introduction to a Scandinavian pollen flora. Grana Pal 2:3–92

    Article  Google Scholar 

  • Fernandez I (1987) Contribution al conocimiento palinologico de Cyperaceae. Acta Bot Malacitana 12:173–182

    Google Scholar 

  • Furness CA, Rudall PJ (1999) Microsporogenesis in monocotyledons. Ann Bot 84:475–499

    Article  Google Scholar 

  • Furness CA, Rudall PJ (2004) Pollen and aperture evolution—a crucial factor for eudicot succes? Trends Pl Sci 9:154–158

    Article  CAS  Google Scholar 

  • Goetghebeur P (1998) Cyperaceae. In: Kubitzki K (ed) The families and genera of vascular plants. Flowering plants-monocotyledons, vol 4. Springer, Berlin, pp 141–190

    Google Scholar 

  • Govaerts R, Simpson DA, Goetghebeur P, Wilson K, Egorova T, Bruhl JJ (2007) World checklist of Cyperaceae. The Board of Trusteeds of the Royal Botanic Gardens, Kew. Available at http://www.kew.org/wcsp/monocots/, Accessed on 1 October 2007

  • Haines RW, Lye KA (1983) The sedges and rushes of East Africa. African Natural History Society, Nairobi

    Google Scholar 

  • Hesse M (1986) Orbicules and the ektexine are homologous sporopollenin concretions in Spermatophyta. Pl Syst Evol 153:37–48

    Article  CAS  Google Scholar 

  • Huang TC, Chung TF (1971) Pollen grains of formosan plants (7). Taiwania 16:85–104

    Google Scholar 

  • Huysmans S, El-Ghazaly G, Nilsson S, Smets E (1997) Systematic value of tapetal orbicules: a preliminary survey of the Cinchonoideae (Rubiaceae). Canad J Bot 75:815–826

    Google Scholar 

  • Huysmans S, El-Ghazaly G, Smets E (1998) Orbicules in angiosperms: morphology, function, distribution, and relation with tapetum types. Bot Rev 64:240–272

    Article  Google Scholar 

  • Huysmans S, El-Ghazaly G, Smets E (2000) Orbicules: still a well hidden secret of the anther. In: Nordenstam B, El-Ghazaly G, Kassas M (eds) Plant Systematics for the 21st Century. Wenner-Gren International Series, vol 77. Portland Press, London, pp 201–212

    Google Scholar 

  • Kirpes CC, Clark LG, Lersten NR (1996) Systematic significance of pollen arrangement in microsporangia of Poaceae and Cyperaceae: review and observations on representative taxa. Amer J Bot 83:1609–1622

    Article  Google Scholar 

  • Kosmath L (1927) Studien über das Antherentapetum. Österr Bot Z 76:235–241

    Article  Google Scholar 

  • Koyama T (1961) Classification of the family Cyperaceae (1). J Fac Sci, University of Tokyo 8:1609–1622

    Google Scholar 

  • Maddison DR, Maddison WP (2001) MacClade 4: analysis of phylogeny and character evolution, Version 4.04. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Moar NT, Wilmshurst JM (2003) A key to the pollen of New Zealand Cyperaceae. New Zealand J Bot 41:325–334

    Google Scholar 

  • Muasya AM, Simpson DA, Chase MW, Culham A (1998) An assessment of suprageneric phylogeny in Cyperaceae using rbcL DNA sequences. Pl Syst Evol 211:257–271

    Article  CAS  Google Scholar 

  • Muasya AM, Bruhl JJ, Simpson DA, Culham A, Chase MW (2000) Suprageneric phylogeny of Cyperaceae: a combined analysis. In: Wilson KL, Morrison DA (eds) Monocots II. Monocots: systematics and evolution. CSIRO, Melbourne, pp 593–601

    Google Scholar 

  • Muasya AM, Simpson DA, Chase MW (2002) Phylogenetic relationships in Cyperus L. s.l. (Cyperaceae) inferred from plastid DNA sequence data. Bot J Linn Soc 138(2):145–153

    Article  Google Scholar 

  • Muasya AM, Simpson DA, Verboom GA, Goetghebeur P, Naczi RFC, Chase MW, Smets E (2008) Phylogeny of cyperaceae based on DNA sequence data: current progress and future prospects. Bot Rev (in press)

  • Padhye MD, Makde KH (1980) Pollen morphology of Cyperaceae. J Palynol 16:71–81

    Google Scholar 

  • Perveen A (2006) A contribution to the pollen morphology of family Gramineae. World Appl Sci J 1(2):60–65

    Google Scholar 

  • Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A (2007) Glossary of pollen and spore terminology. Rev Palaeobot Palynol 143: 1–81. http://www.bio.uu.nl/~palaeo/glossary/glos-int.htm

    Google Scholar 

  • Raj B, El-Ghazaly G (1987) Morphology and taxonomic application of orbicules (Ubisch bodies) in Chloanthaceae. Pollen Spores 29:151–166

    Google Scholar 

  • Ressayre A, Raquin C, Mignot A, Godelle B, Gouyon PH (2002) Correlated variation in microtubule distribution, callose deposition during male, post-meiotic cytokinesis, and pollen aperture number across Nicotiana species (Solanaceae). Amer J Bot 89:393–400

    Article  Google Scholar 

  • Rowley JR (1962) Stranded arrangement of sporopollenin in the exine of microspores in Poa annua. Sci 137(3529):526–528

    Article  Google Scholar 

  • Rowley JR, Dunbar A (1996) Pollen development in Centrolepis aristata (Centrolepidaceae). Grana 35(1):1–15

    Google Scholar 

  • Rudall PJ, Bateman RM (2007) Developmental bases for key innovations in the seed-plant microgametophyte. Trends Pl Sci 12(7):317–326

    Article  CAS  Google Scholar 

  • Schols P, Dessein S, D’hondt C, Huysmans S, Smets E (2002) Carnoy: a new digital measurement tool for palynology. Grana 41:124–126

    Article  Google Scholar 

  • Schols P, Es K, D’hondt C, Merckx V, Smets E, Huysmans S (2004a) A new enzyme-based method for the treatment of fragile pollen grains collected from herbarium material. Taxon 53:777–782

    Article  Google Scholar 

  • Schols P, D’hondt C, Geuten K, Merckx V, Janssens S, Smets E (2004b) Morphocode: coding quantitative data for phylogenetic analysis. PhyloInformatics 4:1–4

    Google Scholar 

  • Schols P, Wilkin P, Furness CA, Huysmans S, Smets E (2005) Pollen evolution in Yams (Dioscorea: Dioscoreaceae). Syst Bot 30(4):750–758

    Article  Google Scholar 

  • Selling OH (1947) Studies in the Hawaiian pollen statistics, Part II. The pollens of the Hawaiian phanerograms. Bulletin of the Bishop Museum. Honolulu 38:1–360

    Google Scholar 

  • Shah CK (1962) Pollen development in some members of the Cyperaceae. Plant embryology—a symposium. CSIR, New Delhi, pp 81–93

    Google Scholar 

  • Simpson DA, Furness CA, Hodkinson TR, Muasya AM, Chase MW (2003) Phylogenetic relationships in Cyperaceae subfamily Mapanioideae inferred from pollen and plastid DNA sequence data. Amer J Bot 90:1071–1086

    Article  CAS  Google Scholar 

  • Simpson DA, Muasya AM, Alves M, Bruhl JJ, Dhooge S, Chase MW, Furness CA, Ghamkhar K, Goetghebeur P, Hodkinson TR, Marchant AD, Nieuborg R, Reznicek AA, Roalson EH, Smets E, Starr JR, Thomas WW, Wilson KL, Zhang X (2008) Phylogeny of Cyperaceae based on DNA sequence data—a new rbcL analysis. In: MonocotsIII/Grasses IV. Claremont, CA: Aliso 23: 72–83

  • Skvarla JJ, Rowley JR, Hollowell VC, Chissoe WF (2003) Annulus-pore relationship in Gramineae (Poaceae) pollen: the pore margin of Pariana. Amer J Bot 90:924–930

    Article  Google Scholar 

  • Smith-White S (1959) Pollen development patterns in the Epacridaceae. Proc Linn Soc NSW 84:8–35

    Google Scholar 

  • Strandhede SO (1973) Pollen development in Eleocharis Palustris Group (Cyperaceae). 2. Cytokinesis and microspore degeneration. Bot Not 126:255–265

    Google Scholar 

  • Tanaka N, Uehara K, Murata J (2004) Correlation between pollen morphology and pollination mechanisms in the Hydrocharitaceae. J Pl Res 117:265–276

    Article  Google Scholar 

  • Thiele K (1993) The holy grail of the perfect character: the cladistic treatment of morphometric data. Cladistics 9:275–304

    Article  Google Scholar 

  • von Ubisch G (1927) Entwicklungsgeschichte der Antheren. Planta 3:490–495

    Google Scholar 

  • Van Wichelen J, Camelbeke K, Chaerle P, Goetghebeur P, Huysmans S (1999) Comparison of different treatments for LM and SEM studies and systematic value of pollen grains in Cyperaceae. Grana 38:50–58

    Article  Google Scholar 

  • Vinckier S, Huysmans S, Smets E (2000) Morphology and ultrastructure of orbicules in the subfamily Ixoroideae (Rubiaceae). Rev Palaeobot Palynol 108:151–174

    Article  PubMed  Google Scholar 

  • Vinckier S, Smets E (2001) The potential role of orbicules as a vector of allergens. Allergy 56:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Vinckier S, Smets E (2002) Morphological and ultrastructural diversity of orbicules in relation to evolutionary tendencies in Apocynaceae s.l. Ann Bot 90:647–662

    Article  PubMed  CAS  Google Scholar 

  • Vrijdaghs A, Goetghebeur P, Smets E, Muasya AM (2006) The floral scales in Hellmuthia (Cyperaceae, Cyperoideae) and Paramapania (Cyperaceae, Mapanioideae), an ontogenetic study. Ann Bot 98:619–630

    Article  PubMed  CAS  Google Scholar 

  • Wodehouse RP (1935) Pollen grains. Their structure identification and significance in science and medicine. Hafner, New York

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by the research council of K. U. Leuven (OT/05/35) and the Fund for Scientific Research—Flanders (Belgium) (F.·W. O.—G.0268.04). S. Vinckier was a postdoctoral fellow of F.·W. O. in the course of this study. A. M. Muasya acknowledges the Norwegian Council for Higher Education Programme for Development Research & Education (NUFU project 53/03) for funding and Flora Research Permit from CapeNature (AAA005-00054-0028). We thank Prof. P. Goetghebeur from the University of Ghent and Prof. J. Rammeloo, Director of the National Botanic Garden of Belgium (BR) for the supply of living material and herbarium specimens. We are grateful to Anja Vandeperre for technical assitance. Dr. Ochoterena and Steven Janssens are acknowledged for their assistance with the character optimization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Nagels.

Appendices

Appendix 1: Species studied are listed alphabetically; fixed material (without asterisk), herbarium specimens are indicated with an asterisks and living material with double asterisks

  • Afrotrilepis pilosa (Ridl.) Gilly (*), Cameroon, P. Goetghebeur, 5182 (GENT).

  • Amphiscirpus nevadensis S. Watson (*), USA, J. Bouharmont, 19926, BR-S·P. 917869 (BR).

  • Arthrostylis aphylla R. Br., Australia, R.K. Harwood, RKH 1161.

  • Baumea rubiginosa Boeck., Australia, J.J. Bruhl and Hodges, JH 792.

  • Becquerelia cymosa Brogniart (*), Brazil, M. Luceno, 33B (GENT).

  • Bulbostylis hispidula (Vahl) R.W. Haines, Kenya, A.M. Muasya, AM 2466.

  • Capeobolus brevicaulis (C.B. Clarke), J. Browning, South Africa, A.M. Muasya, AM 2203.

  • Carex capitata L., Botanical Garden University Ghent, Belgium, P. Goetghebeur, PG 10466.

  • Carex elata Lowe, cultivated in the Botanical Garden of the Institute of Botany and Microbiology (K.U.Leuven) Belgium, A. Vrijdaghs, AV11.

  • Carex monostachya, A. Rich. (*), Senegal, C. Vanden Berghen, 8701 (BR)

  • Caustis flexuosa, R. Br. (*), USA, E.F. Constable, 26663 (BR).

  • Caustis recurvata Spreng. (*), Australia, P.K. Endress, 4381 (GENT).

  • Chorizandra cymbaria R. Br. (*), Australia, K.L. Wilson and K. Frank, 8954 (GENT).

  • Chorizandra enodis Nees, Australia, K.L. Wilson and K. Frank, 8922 (GENT).

  • Chrysitrix dodii C.B. Clarke, South Africa, A.M. Muasya, AM 2797.

  • Cladium mariscus (L.) Pohl, National Botanical Garden of Belgium, A. Vrijdaghs, AV06.

  • Coleochloa setifera (Ridl.) Gilly, Kenya, A.M. Muasya, AM 2464.

  • Costularia humbertii Bosser (*), Madagascar, J.S. Miller and P.P. Lowry, II4175 (GENT).

  • Courtoisina assimilis (Steud.) P. Maquet, Kenya, A.M. Muasya, AM 2124.

  • Cyperus alternifolius L. (**), Botanical Garden University Ghent Belgium, A. Vrijdaghs, 2001/1114.

  • Cyperus articulatus L., Kenya, A.M. Muasya, AM 2168.

  • Cyperus dubius Rottb., Kenya, A.M. Muasya, AM 2188.

  • Cyperus haspan L., Kenya, A.M. Muasya, AM 2135 (EA).

  • Cyperus hemisphaericus Boeckeler (*), Tanzania, E. Milne-Redhead and P. Taylor, 8053A (BR).

  • Cyperus laevigatus L., Botanical Garden University Ghent, Belgium, P. Goetghebeur, PG 10202.

  • Cyperus rotundus L., Kenya, A.M. Muasya, AM 2164.

  • Diplasia karatifolia L.C. Rich (*), Bolivia, R. Rueda, 921 (GENT).

  • Dulichium arundinaceum Britton, Botanical Garden University Ghent, Belgium, P. Goetghebeur, PG 9914.

  • Eleocharis acutangula (Roxb.) Schult., Kenya, A.M. Muasya, AM 2437.

  • Eleocharis palustris R. Br., Hortus Botanicus Lovaniensis Belgium, A. Vrijdaghs, AV07b.

  • Eriophorum latifolium Hoppe, Hortus Botanicus Lovaniensis Belgium, A. Vrijdaghs, AV04.

  • Everardia montana Ridley (*), Venezuela, P.E. Berry, O. Huber and J. Rosales, 4912 (GENT).

  • Exochogyne amazonica C.B. Clarke (*), Brasil, M. Aparecida da Silva, C. Proença, E. Cardoso and J.P. Paixão, 23.5.1994 (GENT).

  • Ficinia brevifolia Nees, South Africa, A.M. Muasya, AM 2205 (BOL, EA, K).

  • Ficinia capitellum Nees, South Africa, A.M. Muasya, AM 2206 (BOL, EA, K).

  • Ficinia dunensis Levyns, South Africa, A.M. Muasya, AM 2242.

  • Ficinia gracilis Schrad., Kenya, A.M. Muasya, AM 2571.

  • Ficinia minutiflora C.B. Clarke, South Africa, A.M. Muasya, AM 2257 (BOL, EA, K).

  • Ficinia polystachya Levyns, South Africa, A.M. Muasya, AM 2320.

  • Ficinia radiata Kunth, South Africa, A.M. Muasya, AM 2262 (BOL, EA, K).

  • Ficinia tristachya (Vahl) Nees, South Africa, A.M. Muasya, AM 2255.

  • Ficinia zeyheri Boeckeler, South Africa, A.M. Muasya, AM 2209 (BOL, EA, K).

  • Fimbristylis complanata (Retz.) Link, Kenya, A.M. Muasya, AM 2147.

  • Fimbristylis xyridis R. Br., Australia, R.K. Harwood, RKH 1162.

  • Fuirena abnormalis C.B. Clarke, Kenya, A.M. Muasya, AM 2192.

  • Fuirena leptostachya Oliver, Kenya, A.M. Muasya, AM 2136.

  • Gahnia lanigera (R. Br.) Benth. (*), Australia, B.J. Blaylock, 1227 (GENT).

  • Hellmuthia membranacea (Thunb.) R.W. Haines and Lye, South Africa, A.M. Muasya, AM 2792 (KUL).

  • Hypolytrum jenmanii C.B. Clarke subsp. jenmanii (*), Guyane, J.J. de Granville, F. Crozier, 13652 (GENT).

  • Isolepis antarctica (Willd.) Roem. & Schult., South Africa, A.M. Muasya, AM 2247 (BOL, EA, K).

  • Isolepis digitata Nees ex Schrad., South Africa, A.M. Muasya, AM 2258.

  • Isolepis prolifera (Rottb.) R. Br., South Africa, A.M. Muasya, AM 2265.

  • Isolepis setacea (L.) R. Br., Kenya, A.M. Muasya, AM 2547.

  • Kobresia myosuroides Fiori & Paoletti, Botanical Garden University Ghent, Belgium, P. Goetghebeur, PG 10009.

  • Kyllinga eximia C.B. Clarke, Kenya, A.M. Muasya, AM 2137.

  • Kyllinga flava C.B. Clarke, Kenya, Musili, MM 009.

  • Kyllinga polyphylla Thou. ex Link (**), Botanical Garden University Ghent, Belgium, A. Vrijdaghs, 2004/21768.

  • Kyllinga sp. Rottb., Kenya, A.M. Muasya, AM 2658.

  • Kyllingiella polyphylla, Kenya, A.M. Muasya, AM 2435.

  • Lagenocarpus rigidus (Kunth) Nees subsp. rigidus (*), French Guiana, D. Torida-Marbot, 329 (GENT).

  • Lepironia articulata (Retzius) Domin (*), Papua New Guinea, P. Goetghebeur and W. Vyverman, 6673 (GENT).

  • Lipocarpha nana (A. Rich.) Cherm., Kenya, A.M. Muasya, AM 2194.

  • Lipocarpha rehmannii (Ridl.) Goetgh., Kenya, A.M. Muasya, AM 3132.

  • Machaerina flexuosa (Böckeler) Kern (*), Madagascar, J.S. Miller and A. Randrianasdo, 4382 (GENT).

  • Mapania cutatrecasasii T. Koyama (*), Costa Rica, G. Herrera, 3282 (GENT).

  • Mapania linderi Hutchinson (*), Ivory Coast, C.C.H. Jongkind, 4435 (GENT).

  • Oxycarium cubense (Poepp. & Kunth) Palla, Kenya, Mwachala, M340.

  • Phylloscirpus acaulis (Philippi) Goetghebeur and D.A. Simpson subsp. pachycaulis (*), Equador, S. Laegaard, S. Dhooge and E. Jones, 21519 (GENT).

  • Pseudoschoenus inanis (Thunb.) Oteng- Yeboah, South Africa, A.M. Muasya, AM 3061.

  • Pycreus flavescens Beauv. ex Rchb. (**), Botanical Garden University Ghent, Belgium, A. Vrijdags, 2005/0401.

  • Pycreus mundtii Nees, Kenya, A.M. Muasya, AM 2156.

  • Pycreus sanguinolentus (Vahl) Nees, Kenya, A.M. Muasya, AM 2157.

  • Rhynchospora sp. Vahl, Australia, R.K. Harwood, RKH 1127.

  • Schoenoplectus senegalensis (Hochst. ex Steud.) Palla, Kenya, Malombe 40.

  • Schoenoxiphium lehmannii Kunth ex Steud., Kenya, Malombe, KG 96.

  • Schoenoxiphium sparteum C.B. Clarke, Kenya, A.M. Muasya, AM 2566.

  • Schoenus nigricans L., UK, K. De Wale, 1239 (GENT).

  • Scirpoides holoschoenus (L.) Sojak (**), Botanical Garden University Ghent, Belgium, A. Vrijdaghs, 2003/1536.

  • Scirpus sylvaticus L. (*), Botanical Garden University Ghent, Belgium, P. Goetghebeur, 5382 (GENT).

  • Scleria rugosa R. Br., Australia, R.K. Harwood, RKH 1143.

  • Scleria terrestris (L.) Fassett (**), Botanical Garden University Ghent, Belgium, A. Vrijdaghs, 21768.

  • Tetraria compar H.C. Taylor (*), South africa, H.C. Taylor, 9996 (GENT).

  • Trianoptiles solitaria (C.B. Clarke) Levyns, South Africa, A.M. Muasya, AM 3024

  • Trichophorum alpinum Pers. (*), USA, D. Collet, 670 (BR).

  • Uncinia rubra Colenso ex Boott, Botanical Garden University Ghent, Belgium, P. Goetghebeur, PG 9727.

Appendix 2: A detailed list of the characters and their states as defined for the optimization and the combined analysis. Characters 1, 2 and 9 are quantitative and continuous characters

  1. 1.

    Polar axis

    1. (0)

      0 (<18)

    2. (1)

      1 (<28)

    3. (2)

      2 (<41)

    4. (3)

      3 (<52)

    5. (4)

      4 (>52)

  2. 2.

    P/E

    1. (0)

      0 (<1)

    2. (1)

      1 (<1.4)

    3. (2)

      2 (<1.7)

    4. (3)

      3 (<2.3)

    5. (4)

      4 (>2.3)

  3. 3.

    Pollen shape

    1. (0)

      suboblate (0.75–0.88)

    2. (1)

      spheroidal (0.88–1.14)

    3. (2)

      subprolate (1.14–1.33)

    4. (3)

      prolate (1.33–2.00)

    5. (4)

      perprolate (>2.00)

  4. 4.

    Distal aperture

    1. (0)

      absent

    2. (1)

      1 ulcus

    3. (2)

      1 sulcus

  5. 5.

    Number lateral apertures

    1. (0)

      absent

    2. (1)

      3

    3. (2)

      4

    4. (3)

      5

    5. (4)

      6

    6. (5)

      >6

  6. 6.

    Shape lateral apertures

    1. (0)

      colpi

    2. (1)

      pori

    3. (2)

      variable

  7. 7.

    Distinctness of apertures

    1. (0)

      pontoperculum

    2. (1)

      operculum

  8. 8.

    Sexine ornamentation

    1. (0)

      microechinate

    2. (1)

      granulate–perforate

    3. (2)

      fossulate

    4. (3)

      negative microreticulate

    5. (4)

      fossulate–rugulate

    6. (5)

      psilate–rugulate

    7. (6)

      microreticulate

  9. 9.

    Orbicule diameter

    1. (0)

      0 (<0.3)

    2. (1)

      1 (<0.6)

    3. (2)

      2 (<0.9)

    4. (3)

      3 (<1.2)

    5. (4)

      4 (>1.2)

  10. 10.

    Orbicule shape

    1. (0)

      angular

    2. (1)

      irregular

    3. (2)

      spherical

    4. (3)

      doughnut-shaped

  11. 11.

    Orbicule ornamentation

    1. (0)

      smooth

    2. (1)

      microgranules

    3. (2)

      microechinae

    4. (3)

      striae

Appendix 3

Table 5.

Table 5 Data matrix with coded characters

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagels, A., Muasya, A.M., Huysmans, S. et al. Palynological diversity and major evolutionary trends in Cyperaceae. Plant Syst Evol 277, 117–142 (2009). https://doi.org/10.1007/s00606-008-0111-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-008-0111-2

Keywords

Navigation